Differences between revisions 1 and 14 (spanning 13 versions)
Revision 1 as of 2019-05-04 23:45:45
Size: 29529
Editor: 정수
Comment:
Revision 14 as of 2020-10-03 16:03:42
Size: 28001
Editor: 정수
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
#acl +All:read
Line 3: Line 5:
== Part 1. Patterns of Quality == <<TableOfContents()>>
Line 5: Line 7:
=== Chapter 1: What Is Quality? Why Is It Important? === == Part 1. 품질의 패턴들 (Patterns of Quality) ==

=== Chapter 1: 품질이란 무엇인가? 그것이 왜 중요한가? (What Is Quality? Why Is It Important?) ===
Line 8: Line 12:
 1. Quality is relative. What is quality to one person may even be lack of quality to another.
 2. Finding the relativity involves detecting the implicit person or persons in the statement about quality, by asking, "Who is the person behind that statement about quality."
 3. Quality is neither more nor less than value to some person or persons. This view allows us to reconcile such statements as,"Zero defects is high quality." , "Lots of features is high quality." , "Elegant coding is high quality." , "High performance is high quality." , "Low development cost is high quality." , "Rapid development is high quality." , "User-friendliness is high quality." All of the statements can be true at the same time.
 4. Quality is almost always a political/emotional issue, though we like to pretend it can be settled rationally.
 5. Quality is not identical with freedom from errors. A software product that does not even conform to its formal requirements could be considered of high quality by some of its users.
 6. Improving quality is so difficult because organizations tend to lock on to a specific pattern of doing things. They adapt to the present level of quality, they don't know what is needed to change to new level, and they don't really try to find out.
 7. The patterns adopted by software organizations tend to fall into a few clusters, or subcultures, each of which produces characteristic results.
 8. Cultures are inherently conservative. This conservatism is manifested primarily in
  1. the satisfaction with a particular level of quality
  1. the fear of losing that level in an attempt to do even better
  1. the lack of understanding of other cultures
  1. the invisibility of their own culture

1. 품질은 상대적이다. 한 사람에게 좋은 품질은 다른 사람에게 낮은 품질일 수도 있다. ~-Quality is relative. What is quality to one person may even be lack of quality to another.-~
 2. 상대성을 찾는 것은 "품질에 관한 그 진술의 뒤에 있는 그 사람이 누구냐"라고 물음으로써, 품질에 관한 진술의 암묵적인 사람이나 사람들을 탐지하는 것을 포함한다. ~-Finding the relativity involves detecting the implicit person or persons in the statement about quality, by asking, "Who is the person behind that statement about quality."-~
 3. 어떤 사람이나 사람들에게 있어서 품질은 가치보다 크거나 작지 않다. 이러한 견해는 "결함을 0으로 하는 것이 고품질이다.", "기능이 많은 것이 고품질이다.", "우수한 코딩이 고품질이다.", "고성능이 고품질이다.", "적은 개발 비용이 고품질이다.", "쾌속 개발이 고품질이다.", "사용자 친화성이 고품질이다."와 같은 문구를 조화시킬 수 있게 한다. 모든 진술이 동시에 사실일 수 있다. ~-Quality is neither more nor less than value to some person or persons. This view allows us to reconcile such statements as,"Zero defects is high quality." , "Lots of features is high quality." , "Elegant coding is high quality." , "High performance is high quality." , "Low development cost is high quality." , "Rapid development is high quality." , "User-friendliness is high quality." All of the statements can be true at the same time.-~
 4. 품질은 거의 항상 정치적/감정적인 문제지만, 우리는 합리적으로 해결될 수 있는 것처럼 행동하기를 좋아한다. ~-Quality is almost always a political/emotional issue, though we like to pretend it can be settled rationally.-~
 5. 품질은 오류로부터의 자유와 동일하지 않다. 일부 사용자들은 공식적인 요구 조건에도 부합하지 않는 소프트웨어 제품을 높은 품질로 간주할 수 있다. ~-Quality is not identical with freedom from errors. A software product that does not even conform to its formal requirements could be considered of high quality by some of its users.-~
 6. 조직들이 일을 하는 특정한 패턴을 고수하는 경향이 있기 때문에 품질을 향상시키는 것은 매우 어렵다. 그들은 현재의 수준의 품질에 적응하고, 새로운 수준으로 변화하는데 무엇이 필요한지 알지 못하며, 실제로 알아내려고 노력하지 않는다. ~-Improving quality is so difficult because organizations tend to lock on to a specific pattern of doing things. They adapt to the present level of quality, they don't know what is needed to change to new level, and they don't really try to find out.-~
 7. 소프트웨어 조직에서 채택한 패턴은 몇 개의 클러스터, 즉 하위문화에 속하는 경향이 있는데, 각각은 그 특징적인 결과를 낳는다. ~-The patterns adopted by software organizations tend to fall into a few clusters, or subcultures, each of which produces characteristic results.-~
 8. 문화는 본질적으로 보수적이다. 이 보수주의는 주로 다음과 같은 것들에 나타나 있다 ~-Cultures are inherently conservative. This conservatism is manifested primarily in-~
  1. 특정 수준의 품질에 대한 만족도 ~-the satisfaction with a particular level of quality-~
  1. 훨씬 더 잘하려고 하는 시도로 그 수준을 잃는 것에 대한 두려움 ~-the fear of losing that level in an attempt to do even better-~
  1. 타문화에 대한 이해 부족 ~-the lack of understanding of other cultures-~
  1. 그들 자신의 문화의 투명성 ~-the invisibility of their own culture-~
Line 22: Line 27:
=== Chapter 2. Software Subcultures === === Chapter 2. 소프트웨어 하위 문화들 (Software Subcultures) ===
Line 25: Line 30:
 1. Philip Crosby's "Quality is Free" ideas can be applied to software, though perhaps with several modifications.
 2. In software, conformance to requirements is not enough to define quality, because requirements cannot be as certain as in a manufacturing operation.
 3. Our experience with software tells us that "zero defects" is not realistic in most projects, because there is diminishing value for the last few defects. Moreover, there are requirements defects that tend to dominate once the other defects are diminished.
 4. Contrary to Crosby's claim, there is an "economics of quality" for software. We are not searching for perfection, but for value, unless we have a psychological need for perfection not justified by value.
 5. Any software cultural pattern can be a success, given the right customer.
 6. "Maturity" is not the right word for sub-cultural patterns, because it implies superiority where none can be inferred.
 7. We can identify at least six software sub-cultural patterns:
  * Pattern 0: oblivious
  * Pattern 1: variable
  * Pattern 2: routine (but unstable)
  * Pattern 3: steering
  * Pattern 4: anticipating
  * Pattern 5: congruent
 8. Hardly any observations exist on Patterns 4 and 5, as almost all software organizations are found in other patterns.
 9. In this book, we shall be concerned primarily with Patterns 1-3—how to hold onto a satisfactory pattern or move to a more satisfactory one.
Line 41: Line 31:
=== Chapter 3. What Is Needed To Change Patterns? ===  1. PhilipCrosby의 "품질은 공짜다" 아이디어는 아마도 몇 가지 손보면 소프트웨어에 적용될 수 있다. ~-Philip Crosby's "Quality is Free" ideas can be applied to software, though perhaps with several modifications.-~
 2. 소프트웨어에서, 요구사항을 준수하는 것은 제조 작업에서처럼 요구사항이 확실할 수 없기 때문에 품질을 정의하기에 충분하지 않다. ~-In software, conformance to requirements is not enough to define quality, because requirements cannot be as certain as in a manufacturing operation.-~
 3. 소프트웨어에 대한 우리의 경험에 따르면 "결함 0"은 대부분의 프로젝트에서 현실적이지 않다. 왜냐하면 마지막 몇 가지 결함에 대한 가치가 감소하기 때문이다. 더욱이 다른 결점이 줄어들면 지배하는 경향이 있는 요구사항 결점이 있다. ~-Our experience with software tells us that "zero defects" is not realistic in most projects, because there is diminishing value for the last few defects. Moreover, there are requirements defects that tend to dominate once the other defects are diminished.-~
 4. 크로스비의 주장과는 달리, 소프트웨어에서는 "품질의 경제학"이 있다. 가치로 정당화되지 않은 완벽에 대한 심리적 욕구가 없는 한 우리는 완벽을 추구하는 것이 아니라 가치를 찾는 것이다. ~-Contrary to Crosby's claim, there is an "economics of quality" for software. We are not searching for perfection, but for value, unless we have a psychological need for perfection not justified by value.-~
 5. 어떠한 소프트웨어 문화 패턴도 올바른 고객으로 볼 때 성공적일 수 있다. ~-Any software cultural pattern can be a success, given the right customer.-~
 6. "성숙도"는 추론할 수 없는 우월성을 내포하고 있기 때문에 하위문화 패턴에 대한 올바른 단어가 아니다. ~-"Maturity" is not the right word for sub-cultural patterns, because it implies superiority where none can be inferred.-~
 7. 우리는 최소 6가지 소프트웨어 하위 문화 패턴을 확인할 수 있다: ~-We can identify at least six software sub-cultural patterns:-~
  * 패턴0: 무의식 ~-Pattern 0: oblivious-~
  * 패턴1: 가변적 ~-Pattern 1: variable-~
  * 패턴2: 루틴 (그러나 불안정) ~-Pattern 2: routine (but unstable)-~
  * 패턴3: 조정하는 ~-Pattern 3: steering-~
  * 패턴4: 예상하는 ~-Pattern 4: anticipating-~
  * 패턴5: 일치적인 ~-Pattern 5: congruent-~
 8. 거의 모든 소프트웨어 조직이 다른 패턴에서 발견되기 때문에 패턴 4,5에 대한 관찰은 거의 존재하지 않는다. ~-Hardly any observations exist on Patterns 4 and 5, as almost all software organizations are found in other patterns.-~
 9. 이 책에서 우리는 주로 패턴 1~3, 즉 어떻게 하면 만족스러운 패턴을 유지하거나 더 만족스러운 패턴으로 이동할 수 있는지에 대해 관심을 가져야 한다. ~-In this book, we shall be concerned primarily with Patterns 1-3—how to hold onto a satisfactory pattern or move to a more satisfactory one.-~

=== Chapter 3. 패턴을 변화시키기 위해서는 무엇이 필요한가? (What Is Needed To Change Patterns?) ===
Line 44: Line 50:
 1. Each pattern has its characteristic way of thinking and communicating.
 2. The first essential to changing a pattern is changing thought patterns that are characteristic of that pattern.
 3. Thinking patterns consist of models, and new models can be used to change thinking patterns
 4. In the less stable patterns, models need not be precise, but merely convincing. Indeed, precise models wouldn't make any sense without first establishing stability.
 5. Models help us to:
  * discover differences in thinking, before they have big consequences
  * work on ideas together, to facilitate team-building
  * understand the reasons for various project practices
  * record communication so newcomers can get productive much faster
  * maintain a record we can use to improve our processes for the next time
  * be creative, because projects will never be routine.
 6. Before you set about choosing a better pattern, you should always ask, "Is our present pattern good enough?"
 7. The pattern you choose depends on a tradeoff among organizational demands, customer demands, and problem demands. These tradeoffs can be represented by choosing a point in "pattern space."
 8. There is always a temptation for a software organization to stagnate by not choosing a new pattern, but instead reducing customer demands or problem demands.
 9. The process of recognizing that a new pattern is needed is hindered by circular arguments that close the organization to the information it needs.
 10. The key to opening closed circles is the question, "Is your rate of success okay?" Closed circles, however, tend to prevent this question from being asked.
 11. Lack of trust tends to keep this key question from being answered truthfully, so organizational change often begins with actions for developing trust.
Line 62: Line 51:
== Part II. Patterns Of Managing ==  1. 각 패턴은 독특한 사고방식과 의사소통 방식을 가지고 있다. ~-Each pattern has its characteristic way of thinking and communicating.-~
 2. 패턴을 바꾸는데 있어 가장 먼저 필수적인 것은 그 패턴의 특징인 사고 패턴을 바꾸는 것이다. ~-The first essential to changing a pattern is changing thought patterns that are characteristic of that pattern.-~
 3. 사고 패턴은 모델로 구성되며, 새로운 모델을 사용하여 사고 패턴을 바꿀 수 있다. ~-Thinking patterns consist of models, and new models can be used to change thinking patterns-~
 4. 안정성이 떨어지는 패턴에서 모델은 정밀할 필요가 없고, 단지 설득력만 있으면 된다. 사실, 정확한 모델은 안정성을 먼저 확립하지 않으면 말이 안될 것이다. ~-In the less stable patterns, models need not be precise, but merely convincing. Indeed, precise models wouldn't make any sense without first establishing stability.-~
 5. 모델은 우리에게 이러한 점을 도와준다: ~-Models help us to:-~
  * 큰 결과를 낳기 전에 사고의 차이를 발견함 ~-discover differences in thinking, before they have big consequences-~
  * 팀 구성을 촉진하기 위해 아이디어를 함께 연구 ~-work on ideas together, to facilitate team-building-~
  * 다양한 프로젝트 관행이 필요한 이유 이해 ~-understand the reasons for various project practices-~
  * 새로운 사용자의 생산성이 훨씬 빨라질 수 있도록 커뮤니케이션 기록 ~-record communication so newcomers can get productive much faster-~
  * 다음번에 프로세스를 개선하는데 사용할 수 있는 기록 유지 ~-maintain a record we can use to improve our processes for the next time-~
  * 창의적이 되기, 왜냐하면 프로젝트는 결코 루틴하지 않을 것이기 때문에 ~-be creative, because projects will never be routine.-~
 6. 더 좋은 패턴을 고를 준비를 하기 전에 항상 "우리 현재의 패턴이 충분한가?"라고 물어봐야 한다. ~-Before you set about choosing a better pattern, you should always ask, "Is our present pattern good enough?"-~
 7. 당신이 선택하는 패턴은 조직적 요구, 고객 요구, 문제 요구 사이의 절충에 달려 있다. 이러한 트레이드오프틑 "패턴 스페이스"에서 한 점을 선택함으로써 나타낼 수 있다. ~-The pattern you choose depends on a tradeoff among organizational demands, customer demands, and problem demands. These tradeoffs can be represented by choosing a point in "pattern space."-~
 8. 소프트웨어 조직이 새로운 패턴을 선택하지 않고 대신 고객의 요구나 문제 요구를 줄임으로써 정체되는 유혹이 항상 존재한다. ~-There is always a temptation for a software organization to stagnate by not choosing a new pattern, but instead reducing customer demands or problem demands.-~
 9. 새로운 패턴이 필요하다고 인식하는 과정은 조직이 필요로 하는 정보에 접근하는 순환적 논쟁에 의해 방해된다. ~-The process of recognizing that a new pattern is needed is hindered by circular arguments that close the organization to the information it needs.-~
 10. 폐쇄적인 서클을 여는 열쇠는 "당신의 성공률은 괜찮은가?"라는 질문이다. 그러나 폐쇄적인 서클은 이 질문을 하지 못하게 하는 경향이 있다. ~-The key to opening closed circles is the question, "Is your rate of success okay?" Closed circles, however, tend to prevent this question from being asked.-~
 11. 신뢰 부족은 이 핵심 질문에 진실하게 대답하지 못하게 하는 경향이 있으므로, 조직의 변화는 종종 신뢰를 발전시키기 위한 행동으로 시작된다. ~-Lack of trust tends to keep this key question from being answered truthfully, so organizational change often begins with actions for developing trust.-~
Line 64: Line 69:
=== Chapter 4: Control Patterns for Management === == Part II. 관리의 패턴들 (Patterns Of Managing) ==

=== Chapter 4: 관리를 위한 제어 패턴들 (Control Patterns for Management) ===
Line 67: Line 74:
 1. The Aggregate Control Model tells us that if we're willing to spend enough on redundant solutions, we'll eventually get the system we want. Sometimes this is the most practical way, or the only way we can think of.
 2. The Feedback Control Model tries for a more efficient way of getting what we want. A controller controls a system based on information about what the system is currently doing. Comparing this information with what is planned for the system, the controller takes actions designed to bring the system's behavior closer to plan.
 3. The job of Engineering Management is to act as controller in engineering projects. Failures of engineering management can be understood in terms of the Feedback Control Model. Pattern 2 managers often lack this understanding, which often explains why they experience so many low quality, or failed, projects.
 4. Projects can fail when there is no plan for what should happen.
 5. Projects can fail when the controller fails to observe what significant things are really happening.
 6. Projects can fail when the controller fails to compare the observed with the planned.
 7. Projects can fail when the controller cannot or will not take action to bring actual closer to planned.
Line 75: Line 75:
=== Chapter 5 Making Explicit Management Models ===  1. Aggregate Control Model은 중복 솔루션에 충분한 비용을 지출할 의향이 있다면 결국 원하는 시스템을 얻게 될 것이라고 알려준다. 때로 이것이 가장 실용적인 방법이거나 우리가 생각할 수 있는 유일한 방법이다. ~-The Aggregate Control Model tells us that if we're willing to spend enough on redundant solutions, we'll eventually get the system we want. Sometimes this is the most practical way, or the only way we can think of.-~
 2. 피드백 제어 모델은 우리가 원하는 것을 얻는 보다 효율적인 방법을 시도한다. 컨트롤러는 시스템이 현재 무엇을 하고 있는지에 대한 정보를 기반으로 시스템을 제어한다. 이 정보와 시스템을 위해 계획된 정보를 비교하여 컨트롤러는 시스템의 동작을 계획에 가깝게 하기 위해 설계된 조치를 취한다. ~-The Feedback Control Model tries for a more efficient way of getting what we want. A controller controls a system based on information about what the system is currently doing. Comparing this information with what is planned for the system, the controller takes actions designed to bring the system's behavior closer to plan.-~
 3. 엔지니어링 관리의 업무는 엔지니어링 프로젝트에서 컨트롤러 역할을 하는 것이다. 엔지니어링 관리의 실패는 피드백 제어 모델 측면에서 이해할 수 있다. 패턴2 관리자는 종종 이러한 이해가 부족하며, 이는 종종 왜 그들이 그렇게 많은 낮은 품질의 프로젝트를 경험하거나 실패하는지를 설명해준다. ~-The job of Engineering Management is to act as controller in engineering projects. Failures of engineering management can be understood in terms of the Feedback Control Model. Pattern 2 managers often lack this understanding, which often explains why they experience so many low quality, or failed, projects.-~
 4. 무슨 일이 일어나야 할지에 대한 계획이 없을 때 프로젝트는 실패할 수 있다. ~-Projects can fail when there is no plan for what should happen.-~
 5. 컨트롤러가 실제로 어떤 중요한 일이 일어나고 있는지 관찰하지 못하면 프로젝트가 실패할 수 있다. ~-Projects can fail when the controller fails to observe what significant things are really happening.-~
 6. 컨트롤러가 관찰된 것과 계획된 것을 비교하지 못할 때 프로젝트는 실패할 수 있다. ~-Projects can fail when the controller fails to compare the observed with the planned.-~
 7. 컨트롤러가 실제 계획에 근접하기 위한 조치를 취할 수 없거나 하지 않을 때 프로젝트가 실패할 수 있다. ~-Projects can fail when the controller cannot or will not take action to bring actual closer to planned.-~

=== Chapter 5 명시적인 관리 모델들 만들기 (Making Explicit Management Models) ===
Line 78: Line 86:
 1. Every manager and programmer has models of how things work in their software pattern, though many models are implicit in their behavior, rather than stated explicitly. Things go awry in software projects because people are unable to face reality and because they use incorrect system models.
 2. Linear models are attractive because of additivity. Linear systems are easier to model, easier to predict, and easier to control. Managers often commit scaling fallacies because linear models are so attractive.
 3. The diagram of effects is a tool for helping model system dynamics to reveal non-linearities. Being a two-dimensional picture, it is more suited than verbal descriptions to the job of describing non-linear systems.
 4. One way of developing a diagram of effects is to start with the output—the variable whose behavior you wish to control. You then brainstorm and chart backwards effects from that variable—other variables that could affect it. From these, you chart backwards again, unveiling secondary effects, which you can trace through the primary effects to the variable of interest. You may want to explicitly indicate multiplicative effects because of their importance.
 5. Non-linearity is the reason things go awry, so searching for non-linearity is a major task of system modeling.
Line 84: Line 87:
=== Chapter 6: Feedback Effects ===  1. 모든 관리자와 프로그래머는 소프트웨어 패턴에서 사물이 어떻게 작용하는지에 대한 모델을 가지고 있다. 비록 많은 모델이 명시적으로 언급되기보다는 그들의 행동에 내포되어 있지만 말이다. 사람들이 현실을 직시할 수 없고 잘못된 시스템 모델을 사용하기 때문에 소프트웨어 프로젝트에서 일이 꼬이고 있다. ~-Every manager and programmer has models of how things work in their software pattern, though many models are implicit in their behavior, rather than stated explicitly. Things go awry in software projects because people are unable to face reality and because they use incorrect system models.-~
 2. 선형 모델은 부가성 때문에 매력적이다. 선형 시스템은 모델링하기 쉽고, 예측하기 쉽고, 제어하기 쉽다. 관리자들은 보통 선형 모델이 매우 매력적이기 때문에 스케일링 오류를 범한다. ~-Linear models are attractive because of additivity. Linear systems are easier to model, easier to predict, and easier to control. Managers often commit scaling fallacies because linear models are so attractive.-~
 3. 효과 다이어그램은 모델 시스템 역학이 비선형성을 드러내도록 돕는 도구다. 2차원 그림인 만큼, 그것은 비선형 시스템을 설명하는 일에 구두 서술보다 더 적합하다. ~-The diagram of effects is a tool for helping model system dynamics to reveal non-linearities. Being a two-dimensional picture, it is more suited than verbal descriptions to the job of describing non-linear systems.-~
 4. 효과의 다이어그램을 개발하는 한 가지 방법은 출력, 즉 행동을 통제하고자 하는 변수부터 시작하는 것이다. 그런 다음 해당 변수에 영향을 미칠 수 있는 다른 변수인 역효과를 브레인스토밍하고 차트화하라. 이 차트에서 1차 효과부터 관심 변수까지 추적할 수 있는 2차 효과를 다시 차트로 표시하라. 당신은 그 중요성 때문에 승스 효과를 명시적으로 표시하기를 원할 수 있다. ~-One way of developing a diagram of effects is to start with the output—the variable whose behavior you wish to control. You then brainstorm and chart backwards effects from that variable—other variables that could affect it. From these, you chart backwards again, unveiling secondary effects, which you can trace through the primary effects to the variable of interest. You may want to explicitly indicate multiplicative effects because of their importance.-~
 5. 비선형성은 일이 꼬이는 이유여서, 비선형성을 찾는 것이 시스템 모델링의 주요 업무다. ~-Non-linearity is the reason things go awry, so searching for non-linearity is a major task of system modeling.-~

=== Chapter 6: 피드백 효과 (Feedback Effects) ===
Line 87: Line 96:
 1. The Humpty Dumpty Syndrome explains one reason why project managers are unable to be courteously stubborn to their mangers, and what happens as a result.
 2. Projects run away—explode or collapse—because managers believe two fallacies: The Reversible Fallacy (that actions can always be undone) and The Causation Fallacy (that every cause has one effect, and you can tell which is cause and which is effect.)
 3. One reason management action contributes to runaway is the tendency to respond too late to deviations, which then forces management to big actions which themselves have non-linear consequences. That's why it's necessary to "act early; act small."
 4. The effect of Brooks's Law can be made worse by management action. Moreover, the same pattern of management action can lead to a Generalized Brooks's Law, which shows how management action is often the leading cause of project collapse.

1. 험프티 덤프티 신드롬은 프로젝트 매니저들이 그들의 망자에게 예의바르게 고집을 부릴 수 없는 한 가지 이유와 그 결과 일어나는 일을 설명한다. ~-The Humpty Dumpty Syndrome explains one reason why project managers are unable to be courteously stubborn to their mangers, and what happens as a result.-~
 2. 프로젝트는 사라진다 - 폭발하거나 붕괴한다 - 관리자들이 다음과 같은 두 가지 오류를 믿기 때문이다: 가역성 오류 (액션들은 항상 되돌릴 수 있다)와 인과 오류 (모든 원인이 하나의 영향을 미치고, 어떤 것이 원인이고 어떤 것이 영향을 미치는 것인지 알 수 있다는 것)이다. ~-Projects run away—explode or collapse—because managers believe two fallacies: The Reversible Fallacy (that actions can always be undone) and The Causation Fallacy (that every cause has one effect, and you can tell which is cause and which is effect.)-~
 3. 관리 활동이 폭주에 기여하는 한 가지 이유는 일탈에 너무 늦게 대응하여 관리자가 스스로 비선형적인 결과를 초래하는 큰 행동으로 내몰리는 경향이다. 그래서 "일찍 행동하라; 작게 행동하라"가 필요한 것이다. ~-One reason management action contributes to runaway is the tendency to respond too late to deviations, which then forces management to big actions which themselves have non-linear consequences. That's why it's necessary to "act early; act small."-~
 4. 브룩스의 법칙의 효과는 관리 행동에 의해 더욱 악화될 수 있다. 더욱이 같은 형태의 관리 행위가 일반화된 브룩스의 법칙으로 이어질 수 있는데, 이는 관리 행위가 종종 프로젝트 붕괴의 주요 원인이 되는 것을 보여준다. ~-The effect of Brooks's Law can be made worse by management action. Moreover, the same pattern of management action can lead to a Generalized Brooks's Law, which shows how management action is often the leading cause of project collapse.-~
Line 92: Line 102:
 6. Negative feedback is the only mechanism that has the speed and power to prevent runaway due to positive feedback loops in a system. The Pattern 3 controller has two major negative feedback loops with which to exercise control—one involving resources and one involving requirements.  6. 네거티브 피드백은 시스템에서 포지티브 피드백 루프로 인해 폭주를 방지할 수 있는 속도와 힘을 가진 유일한 메커니즘이다. 패턴3 컨트롤러에는 두 가지 주요한 네거티브 피드백 루프가 있는데 하나는 자원을 포함하고 다른 하나는 요건을 포함한다. ~-Negative feedback is the only mechanism that has the speed and power to prevent runaway due to positive feedback loops in a system. The Pattern 3 controller has two major negative feedback loops with which to exercise control—one involving resources and one involving requirements.-~
Line 94: Line 104:
=== Chapter 7: Steering Software === === Chapter 7: 소프트웨어 조정하기 (Steering Software) ===
Line 102: Line 112:
=== Chapter 8: Failing to Steer === === Chapter 8: 조정에 실패하기 (Failing to Steer) ===
Line 113: Line 123:
=== Chapter 9: Why It's Always Hard to Steer === === Chapter 9: 왜 조정하는 것은 항상 어려운가 (Why It's Always Hard to Steer) ===
Line 135: Line 145:
=== Chapter 11: Responses to Customer Demands === === Chapter 11: 고객 요청에 대한 응답들 (Responses to Customer Demands) ===
Line 157: Line 167:

= QSM: Volume 1.2: Why Software Gets In Trouble =

== Part IV. Fault Patterns ==

=== Chapter 1: Observing and Reasoning About Errors ===

Summary
 1. One of the reasons organizations have trouble dealing with software errors is the many conceptual errors they make concerning errors.
 2. Some people make errors into a moral issue, losing track of the business justification for the way in which they are handled.
 3. Quality is not the same thing as absence of errors, but the presence of many errors can destroy any other measures of quality in a product.
 4. Organizations that don't handle error very well also don't talk very clearly about error. For instance, they frequently fail to distinguish faults from failures, or use faults to blame people in the organization.
 5. Well functioning organizations can be recognized by the organized way they use faults and failures as information to control their process. The System Trouble Incident (STI) and the System Fault Analysis(SFA) are the fundamental sources of information about failures and faults.
 6. Error-handling processes come in at least five varieties: detection, location, resolution, prevention, and distribution.
 7. In addition to conceptual errors, there are a number of common observational errors people make about errors, including Selection Fallacies, getting observations backwards, and the Controller Fallacy

=== Chapter 2: The Failure Detection Curve ===

Summary
 1. Failure detection is dominated by the tautology that the easiest failures to detect are the first failures to detect, so that as detection proceeds, the work gets harder, producing a characteristic Failure Detection Curve with a long tail.
 2. The long tail of the Failure Detection Curve is one of the principal reasons managers misestimate failure detection tasks.
 3. Because the Failure Detection Curve represents a natural dynamic, there is nothing we can do to perform better than it says. We can, however, perform much worse, if we're not careful of how we manage the failure detection process.
 4. The Failure Detection Curve is not all bad news. The pattern of detected failures over time can be used as a predictor of the time to reach any specified level of failure detection, as long as nothing is happening to undermine test coverage.
 5. Some of the things that can undermine test coverage are blocking faults, masking faults, and late releases to test.
 6. Late finishing modules may arise from a cycle of poor coding, which means that they are more likely to be fault-prone modules. Management policies designed to speed testing of late finishing modules may actually make the problem worse, and may account for much so-called "bad luck" estimating.

=== Chapter 3: Locating The Faults Behind The Failures ===

Summary
 1. System size has a direct effect on the dynamics of fault location, but there are indirect effects as well. We use divide and conquer to beat the Size/Complexity Dynamic, and we also divide the labor to beat delivery time. These efforts, however, lead to a number of indirect effects of system size on fault location time.
 2. You can learn a great deal about its culture by observing how an organization handles its STIs. In particular, you can learn to what degree its cultural pattern is under stress of increased customer or problem demands.
 3. An important dynamic describes the circulation of STIs, which grows non-linearly the more STIs are in circulation.
 4. Process errors such as losing STIs also increase location time.
 5. Political issues, such as status boundaries, can also contribute non-linearly to extending location time. Management action to reduce circulation time by punishing those who hold STIs can lead to the opposite effect.
 6. In general, poorly controlled handling of STIs leads to an enlarged administrative burden, which in turn leads to less poorly controlled handling of STIs. When STIs get out of hand, management needs to study what information that gives them about their cultural pattern, then take action to get at the root causes, not merely the symptoms.

=== Chapter 4: Fault Resolution Dynamics ===

Summary
 1. Basic fault resolution dynamics are another case of Size/Complexity Dynamics, with more faults and more complexity per fault leading to a non-linear increase in fault resolution time as systems grow larger.
 2. Side effects add more non-linearity to fault resolution. Either we take more time to consider side effects, or we create side effects when we change one thing and inadvertently change another.
 3. The most obvious type of side effect is fault feedback, which can be measured by the Fault Feedback Ration (FFR). Fault feedback is the creation of faults while resolving other faults. Faults can be either functional or performance faults.
 4. The FFR is a sensitive measure of project control breakdown. In a well-controlled project, FFR should decline as the project approaches its scheduled end.
 5. One way to keep the FFR under control is to institute careful reviewing of fault resolutions, even if they are "only one line of code." The assumption that small changes can't cause trouble leads to small changes causing more trouble than bigger changes.
 6. There are a number of ways in which a system deteriorates besides the addition of faults and performance inefficiencies, and these ways do not show up in ordinary project measurements. For instance, design integrity breaks down, documentation is not kept current, and coding style becomes patchy. All of these lead to a decrease in the system's maintainability.
 7. When the integrity of a modular, or "black box," design breaks down, the system shows a growing "ripple effect" from each change. That is, one change ripples through to cause many other changes.
 8. If we are to avoid deterioration of systems, they must not only be maintained, but their maintainability must also be maintained.
 9. Managers and developers often show overconfidence in the initial design as protection against maintenance difficulties. This kind of overconfidence can easily lead to a Titanic Effect, because the thought that nothing can go wrong with the code exposes the code to all sorts of ways of going wrong.

== Part V. Pressure Patterns ==

=== Chapter 5: Power, Pressure, and Performance ===

Summary
 1. The Pressure/Performance Relationship says that added pressure can boost performance for a while, then starts to get no response, then leads to collapse.
 2. Pressure to find the last fault can easily prolong the time to find the last fault, perhaps indefinitely.
 3. The Stress/Control Dynamic explains that we not only respond to the external pressures, but to internal pressures we place on ourselves when we think we are losing control. This dynamic makes the Pressure/Performance Relationship even more non-linear.
 4. Breakdown under pressure comes in many forms. Judgment may be the first thing to go, especially in response to peer pressure to see things their way.
 5. As people leave a project, either physically or mentally, it adds pressures to the remaining people, who are then more likely to leave themselves.
 6. Managers may create a Pile-On Dynamic by choosing to give new assignments only to those people who are already the reigning experts. This adds to their load, and their expertise, which makes it more likely they'll get the next assignment.
 7. Some people respond to stress with a Panic Reaction, even though the situation is not anything like life-threatening. Such people must not be in high-stress projects, or they will only add to the stress.
 8. Pressure can be managed. It helps if the workers are self-regulating, the managers are empowering, and that responsiveness, rather than performance, is used to measure readiness for more pressure.

=== Chapter 6: Handling Breakdown Pressure ===

Summary
 1. Software projects commonly break down when the reality of time finally forces them to realize where they actually are. When this happens, however, the symptoms displayed are unique to each project and each individual.
 2. Many symptoms are equivalent to shuffling work around, accomplishing nothing or, even worse, actually sending the project backwards. One such backwards dynamic is the attempt to beat Brooks's Law through splitting tasks among existing workers.
 3. Ineffective priority schemes are common ways of doing nothing. These including setting everything to number one priority, choosing your own priority independent of project priority, or simply doing the easiest task first.
 4. A final way of doing nothing is to circulate "hot potatoes," which are tasks that management counts against you if they are on your desk when "measurement" time comes.
 5. There are a number of ways to observe that managers are actually doing nothing. They may
  * be accepting poor quality products
  * not be accepting schedule slippage
  * be accepting of resource overruns
  * be unavailable to their workers
  * assert that they have no time to do the project right
 6. A sure sign that a project is breaking down under time pressure is when managers and workers start short-circuiting procedures. This invariable creates a boomerang effect in which the very quality the manager intended to improve is made worse by the short-circuiting action.
 7. The decision to ship poor quality to save time and resources always creates a boomerang effect. Bypassing quality assurance is similar. Both of these tactics lead, among other things, to destruction of the development process, more emergencies and interruptions, and devastation of morale.
 8. When morale deteriorates into project depression, process quality will not be maintained, let alone improved. Trust built before the crisis will help an organization recover more quickly, but attempts to build trust during the crisis will probably backfire—especially if they are in the form of telling: "Trust me!"
 9. Multiple customers increase the pressure on the boomerang cycle, up to the point that the resultant poor quality drives away customers, thus stabilizing the organization—or killing it.

=== Chapter 7: What We've Managed To Accomplish ===

Summary
 1. In spite of the impression we might get from studying our failures, we've managed to accomplish a great deal in the past 4 decades of the software industry.
 2. One of the reasons we've accomplished a great deal is the quality of our thinking, which is the strongest asset many of us have, when we use it.
 3. Our industry has probably suffered because of the process by which we select our managers. People who select themselves into programming work probably are not the best "naturals" for management jobs. Nevertheless, they could learn to do a good job of managing, if they were given the training. As long as we don't honor management, however, they're not likely to receive one-tenth the management training they need.
 4. The accomplishments of the software industry are much greater than you would believe if you listened to the purveyors of software and hardware tools. It is in their interest to make us believe that we're not doing very well, but that their tool will be the magic bullet we need.
 5. We tend to be suckers for magic bullets because we want to accomplish great things, but great things are usually accomplished through a series of small steps, contrary to the popular image.
 6. We may fail to recognize how much our productivity has increased because we are so ambitious. Once we succeed in doing something well, we immediately attempt something more grand, without stopping to take stock of our accomplishments.
 7. Each pattern has contributed to the development of our industry. Pattern 0 has made computers less frightening to the general public. Pattern 1 has made many innovations that have contributed to our productivity. Pattern 2 has strung these innovations together into methodologies that make it possible to complete many larger projects in routine ways. Pattern 3 has taught us what is needed to keep even larger projects under control. The contributions of Patterns 4 and 5 are still more in terms of visions of possibilities, but that's as important to progress as actual accomplishments.
 8. Meta-patterns are the development patterns of the culture of the industry as a whole. Once again, each pattern has contributed to the development of meta-patterns, and we are not only learning to handle software, but are learning how to learn to handle software.

QSM: Volume 1.1: How Software is Built

Part 1. 품질의 패턴들 (Patterns of Quality)

Chapter 1: 품질이란 무엇인가? 그것이 왜 중요한가? (What Is Quality? Why Is It Important?)

Summary

  1. 품질은 상대적이다. 한 사람에게 좋은 품질은 다른 사람에게 낮은 품질일 수도 있다. Quality is relative. What is quality to one person may even be lack of quality to another.

  2. 상대성을 찾는 것은 "품질에 관한 그 진술의 뒤에 있는 그 사람이 누구냐"라고 물음으로써, 품질에 관한 진술의 암묵적인 사람이나 사람들을 탐지하는 것을 포함한다. Finding the relativity involves detecting the implicit person or persons in the statement about quality, by asking, "Who is the person behind that statement about quality."

  3. 어떤 사람이나 사람들에게 있어서 품질은 가치보다 크거나 작지 않다. 이러한 견해는 "결함을 0으로 하는 것이 고품질이다.", "기능이 많은 것이 고품질이다.", "우수한 코딩이 고품질이다.", "고성능이 고품질이다.", "적은 개발 비용이 고품질이다.", "쾌속 개발이 고품질이다.", "사용자 친화성이 고품질이다."와 같은 문구를 조화시킬 수 있게 한다. 모든 진술이 동시에 사실일 수 있다. Quality is neither more nor less than value to some person or persons. This view allows us to reconcile such statements as,"Zero defects is high quality." , "Lots of features is high quality." , "Elegant coding is high quality." , "High performance is high quality." , "Low development cost is high quality." , "Rapid development is high quality." , "User-friendliness is high quality." All of the statements can be true at the same time.

  4. 품질은 거의 항상 정치적/감정적인 문제지만, 우리는 합리적으로 해결될 수 있는 것처럼 행동하기를 좋아한다. Quality is almost always a political/emotional issue, though we like to pretend it can be settled rationally.

  5. 품질은 오류로부터의 자유와 동일하지 않다. 일부 사용자들은 공식적인 요구 조건에도 부합하지 않는 소프트웨어 제품을 높은 품질로 간주할 수 있다. Quality is not identical with freedom from errors. A software product that does not even conform to its formal requirements could be considered of high quality by some of its users.

  6. 조직들이 일을 하는 특정한 패턴을 고수하는 경향이 있기 때문에 품질을 향상시키는 것은 매우 어렵다. 그들은 현재의 수준의 품질에 적응하고, 새로운 수준으로 변화하는데 무엇이 필요한지 알지 못하며, 실제로 알아내려고 노력하지 않는다. Improving quality is so difficult because organizations tend to lock on to a specific pattern of doing things. They adapt to the present level of quality, they don't know what is needed to change to new level, and they don't really try to find out.

  7. 소프트웨어 조직에서 채택한 패턴은 몇 개의 클러스터, 즉 하위문화에 속하는 경향이 있는데, 각각은 그 특징적인 결과를 낳는다. The patterns adopted by software organizations tend to fall into a few clusters, or subcultures, each of which produces characteristic results.

  8. 문화는 본질적으로 보수적이다. 이 보수주의는 주로 다음과 같은 것들에 나타나 있다 Cultures are inherently conservative. This conservatism is manifested primarily in

    1. 특정 수준의 품질에 대한 만족도 the satisfaction with a particular level of quality

    2. 훨씬 더 잘하려고 하는 시도로 그 수준을 잃는 것에 대한 두려움 the fear of losing that level in an attempt to do even better

    3. 타문화에 대한 이해 부족 the lack of understanding of other cultures

    4. 그들 자신의 문화의 투명성 the invisibility of their own culture

Chapter 2. 소프트웨어 하위 문화들 (Software Subcultures)

Summary

  1. PhilipCrosby의 "품질은 공짜다" 아이디어는 아마도 몇 가지 손보면 소프트웨어에 적용될 수 있다. Philip Crosby's "Quality is Free" ideas can be applied to software, though perhaps with several modifications.

  2. 소프트웨어에서, 요구사항을 준수하는 것은 제조 작업에서처럼 요구사항이 확실할 수 없기 때문에 품질을 정의하기에 충분하지 않다. In software, conformance to requirements is not enough to define quality, because requirements cannot be as certain as in a manufacturing operation.

  3. 소프트웨어에 대한 우리의 경험에 따르면 "결함 0"은 대부분의 프로젝트에서 현실적이지 않다. 왜냐하면 마지막 몇 가지 결함에 대한 가치가 감소하기 때문이다. 더욱이 다른 결점이 줄어들면 지배하는 경향이 있는 요구사항 결점이 있다. Our experience with software tells us that "zero defects" is not realistic in most projects, because there is diminishing value for the last few defects. Moreover, there are requirements defects that tend to dominate once the other defects are diminished.

  4. 크로스비의 주장과는 달리, 소프트웨어에서는 "품질의 경제학"이 있다. 가치로 정당화되지 않은 완벽에 대한 심리적 욕구가 없는 한 우리는 완벽을 추구하는 것이 아니라 가치를 찾는 것이다. Contrary to Crosby's claim, there is an "economics of quality" for software. We are not searching for perfection, but for value, unless we have a psychological need for perfection not justified by value.

  5. 어떠한 소프트웨어 문화 패턴도 올바른 고객으로 볼 때 성공적일 수 있다. Any software cultural pattern can be a success, given the right customer.

  6. "성숙도"는 추론할 수 없는 우월성을 내포하고 있기 때문에 하위문화 패턴에 대한 올바른 단어가 아니다. "Maturity" is not the right word for sub-cultural patterns, because it implies superiority where none can be inferred.

  7. 우리는 최소 6가지 소프트웨어 하위 문화 패턴을 확인할 수 있다: We can identify at least six software sub-cultural patterns:

    • 패턴0: 무의식 Pattern 0: oblivious

    • 패턴1: 가변적 Pattern 1: variable

    • 패턴2: 루틴 (그러나 불안정) Pattern 2: routine (but unstable)

    • 패턴3: 조정하는 Pattern 3: steering

    • 패턴4: 예상하는 Pattern 4: anticipating

    • 패턴5: 일치적인 Pattern 5: congruent

  8. 거의 모든 소프트웨어 조직이 다른 패턴에서 발견되기 때문에 패턴 4,5에 대한 관찰은 거의 존재하지 않는다. Hardly any observations exist on Patterns 4 and 5, as almost all software organizations are found in other patterns.

  9. 이 책에서 우리는 주로 패턴 1~3, 즉 어떻게 하면 만족스러운 패턴을 유지하거나 더 만족스러운 패턴으로 이동할 수 있는지에 대해 관심을 가져야 한다. In this book, we shall be concerned primarily with Patterns 1-3—how to hold onto a satisfactory pattern or move to a more satisfactory one.

Chapter 3. 패턴을 변화시키기 위해서는 무엇이 필요한가? (What Is Needed To Change Patterns?)

Summary

  1. 각 패턴은 독특한 사고방식과 의사소통 방식을 가지고 있다. Each pattern has its characteristic way of thinking and communicating.

  2. 패턴을 바꾸는데 있어 가장 먼저 필수적인 것은 그 패턴의 특징인 사고 패턴을 바꾸는 것이다. The first essential to changing a pattern is changing thought patterns that are characteristic of that pattern.

  3. 사고 패턴은 모델로 구성되며, 새로운 모델을 사용하여 사고 패턴을 바꿀 수 있다. Thinking patterns consist of models, and new models can be used to change thinking patterns

  4. 안정성이 떨어지는 패턴에서 모델은 정밀할 필요가 없고, 단지 설득력만 있으면 된다. 사실, 정확한 모델은 안정성을 먼저 확립하지 않으면 말이 안될 것이다. In the less stable patterns, models need not be precise, but merely convincing. Indeed, precise models wouldn't make any sense without first establishing stability.

  5. 모델은 우리에게 이러한 점을 도와준다: Models help us to:

    • 큰 결과를 낳기 전에 사고의 차이를 발견함 discover differences in thinking, before they have big consequences

    • 팀 구성을 촉진하기 위해 아이디어를 함께 연구 work on ideas together, to facilitate team-building

    • 다양한 프로젝트 관행이 필요한 이유 이해 understand the reasons for various project practices

    • 새로운 사용자의 생산성이 훨씬 빨라질 수 있도록 커뮤니케이션 기록 record communication so newcomers can get productive much faster

    • 다음번에 프로세스를 개선하는데 사용할 수 있는 기록 유지 maintain a record we can use to improve our processes for the next time

    • 창의적이 되기, 왜냐하면 프로젝트는 결코 루틴하지 않을 것이기 때문에 be creative, because projects will never be routine.

  6. 더 좋은 패턴을 고를 준비를 하기 전에 항상 "우리 현재의 패턴이 충분한가?"라고 물어봐야 한다. Before you set about choosing a better pattern, you should always ask, "Is our present pattern good enough?"

  7. 당신이 선택하는 패턴은 조직적 요구, 고객 요구, 문제 요구 사이의 절충에 달려 있다. 이러한 트레이드오프틑 "패턴 스페이스"에서 한 점을 선택함으로써 나타낼 수 있다. The pattern you choose depends on a tradeoff among organizational demands, customer demands, and problem demands. These tradeoffs can be represented by choosing a point in "pattern space."

  8. 소프트웨어 조직이 새로운 패턴을 선택하지 않고 대신 고객의 요구나 문제 요구를 줄임으로써 정체되는 유혹이 항상 존재한다. There is always a temptation for a software organization to stagnate by not choosing a new pattern, but instead reducing customer demands or problem demands.

  9. 새로운 패턴이 필요하다고 인식하는 과정은 조직이 필요로 하는 정보에 접근하는 순환적 논쟁에 의해 방해된다. The process of recognizing that a new pattern is needed is hindered by circular arguments that close the organization to the information it needs.

  10. 폐쇄적인 서클을 여는 열쇠는 "당신의 성공률은 괜찮은가?"라는 질문이다. 그러나 폐쇄적인 서클은 이 질문을 하지 못하게 하는 경향이 있다. The key to opening closed circles is the question, "Is your rate of success okay?" Closed circles, however, tend to prevent this question from being asked.

  11. 신뢰 부족은 이 핵심 질문에 진실하게 대답하지 못하게 하는 경향이 있으므로, 조직의 변화는 종종 신뢰를 발전시키기 위한 행동으로 시작된다. Lack of trust tends to keep this key question from being answered truthfully, so organizational change often begins with actions for developing trust.

Part II. 관리의 패턴들 (Patterns Of Managing)

Chapter 4: 관리를 위한 제어 패턴들 (Control Patterns for Management)

Summary

  1. Aggregate Control Model은 중복 솔루션에 충분한 비용을 지출할 의향이 있다면 결국 원하는 시스템을 얻게 될 것이라고 알려준다. 때로 이것이 가장 실용적인 방법이거나 우리가 생각할 수 있는 유일한 방법이다. The Aggregate Control Model tells us that if we're willing to spend enough on redundant solutions, we'll eventually get the system we want. Sometimes this is the most practical way, or the only way we can think of.

  2. 피드백 제어 모델은 우리가 원하는 것을 얻는 보다 효율적인 방법을 시도한다. 컨트롤러는 시스템이 현재 무엇을 하고 있는지에 대한 정보를 기반으로 시스템을 제어한다. 이 정보와 시스템을 위해 계획된 정보를 비교하여 컨트롤러는 시스템의 동작을 계획에 가깝게 하기 위해 설계된 조치를 취한다. The Feedback Control Model tries for a more efficient way of getting what we want. A controller controls a system based on information about what the system is currently doing. Comparing this information with what is planned for the system, the controller takes actions designed to bring the system's behavior closer to plan.

  3. 엔지니어링 관리의 업무는 엔지니어링 프로젝트에서 컨트롤러 역할을 하는 것이다. 엔지니어링 관리의 실패는 피드백 제어 모델 측면에서 이해할 수 있다. 패턴2 관리자는 종종 이러한 이해가 부족하며, 이는 종종 왜 그들이 그렇게 많은 낮은 품질의 프로젝트를 경험하거나 실패하는지를 설명해준다. The job of Engineering Management is to act as controller in engineering projects. Failures of engineering management can be understood in terms of the Feedback Control Model. Pattern 2 managers often lack this understanding, which often explains why they experience so many low quality, or failed, projects.

  4. 무슨 일이 일어나야 할지에 대한 계획이 없을 때 프로젝트는 실패할 수 있다. Projects can fail when there is no plan for what should happen.

  5. 컨트롤러가 실제로 어떤 중요한 일이 일어나고 있는지 관찰하지 못하면 프로젝트가 실패할 수 있다. Projects can fail when the controller fails to observe what significant things are really happening.

  6. 컨트롤러가 관찰된 것과 계획된 것을 비교하지 못할 때 프로젝트는 실패할 수 있다. Projects can fail when the controller fails to compare the observed with the planned.

  7. 컨트롤러가 실제 계획에 근접하기 위한 조치를 취할 수 없거나 하지 않을 때 프로젝트가 실패할 수 있다. Projects can fail when the controller cannot or will not take action to bring actual closer to planned.

Chapter 5 명시적인 관리 모델들 만들기 (Making Explicit Management Models)

Summary

  1. 모든 관리자와 프로그래머는 소프트웨어 패턴에서 사물이 어떻게 작용하는지에 대한 모델을 가지고 있다. 비록 많은 모델이 명시적으로 언급되기보다는 그들의 행동에 내포되어 있지만 말이다. 사람들이 현실을 직시할 수 없고 잘못된 시스템 모델을 사용하기 때문에 소프트웨어 프로젝트에서 일이 꼬이고 있다. Every manager and programmer has models of how things work in their software pattern, though many models are implicit in their behavior, rather than stated explicitly. Things go awry in software projects because people are unable to face reality and because they use incorrect system models.

  2. 선형 모델은 부가성 때문에 매력적이다. 선형 시스템은 모델링하기 쉽고, 예측하기 쉽고, 제어하기 쉽다. 관리자들은 보통 선형 모델이 매우 매력적이기 때문에 스케일링 오류를 범한다. Linear models are attractive because of additivity. Linear systems are easier to model, easier to predict, and easier to control. Managers often commit scaling fallacies because linear models are so attractive.

  3. 효과 다이어그램은 모델 시스템 역학이 비선형성을 드러내도록 돕는 도구다. 2차원 그림인 만큼, 그것은 비선형 시스템을 설명하는 일에 구두 서술보다 더 적합하다. The diagram of effects is a tool for helping model system dynamics to reveal non-linearities. Being a two-dimensional picture, it is more suited than verbal descriptions to the job of describing non-linear systems.

  4. 효과의 다이어그램을 개발하는 한 가지 방법은 출력, 즉 행동을 통제하고자 하는 변수부터 시작하는 것이다. 그런 다음 해당 변수에 영향을 미칠 수 있는 다른 변수인 역효과를 브레인스토밍하고 차트화하라. 이 차트에서 1차 효과부터 관심 변수까지 추적할 수 있는 2차 효과를 다시 차트로 표시하라. 당신은 그 중요성 때문에 승스 효과를 명시적으로 표시하기를 원할 수 있다. One way of developing a diagram of effects is to start with the output—the variable whose behavior you wish to control. You then brainstorm and chart backwards effects from that variable—other variables that could affect it. From these, you chart backwards again, unveiling secondary effects, which you can trace through the primary effects to the variable of interest. You may want to explicitly indicate multiplicative effects because of their importance.

  5. 비선형성은 일이 꼬이는 이유여서, 비선형성을 찾는 것이 시스템 모델링의 주요 업무다. Non-linearity is the reason things go awry, so searching for non-linearity is a major task of system modeling.

Chapter 6: 피드백 효과 (Feedback Effects)

Summary

  1. 험프티 덤프티 신드롬은 프로젝트 매니저들이 그들의 망자에게 예의바르게 고집을 부릴 수 없는 한 가지 이유와 그 결과 일어나는 일을 설명한다. The Humpty Dumpty Syndrome explains one reason why project managers are unable to be courteously stubborn to their mangers, and what happens as a result.

  2. 프로젝트는 사라진다 - 폭발하거나 붕괴한다 - 관리자들이 다음과 같은 두 가지 오류를 믿기 때문이다: 가역성 오류 (액션들은 항상 되돌릴 수 있다)와 인과 오류 (모든 원인이 하나의 영향을 미치고, 어떤 것이 원인이고 어떤 것이 영향을 미치는 것인지 알 수 있다는 것)이다. Projects run away—explode or collapse—because managers believe two fallacies: The Reversible Fallacy (that actions can always be undone) and The Causation Fallacy (that every cause has one effect, and you can tell which is cause and which is effect.)

  3. 관리 활동이 폭주에 기여하는 한 가지 이유는 일탈에 너무 늦게 대응하여 관리자가 스스로 비선형적인 결과를 초래하는 큰 행동으로 내몰리는 경향이다. 그래서 "일찍 행동하라; 작게 행동하라"가 필요한 것이다. One reason management action contributes to runaway is the tendency to respond too late to deviations, which then forces management to big actions which themselves have non-linear consequences. That's why it's necessary to "act early; act small."

  4. 브룩스의 법칙의 효과는 관리 행동에 의해 더욱 악화될 수 있다. 더욱이 같은 형태의 관리 행위가 일반화된 브룩스의 법칙으로 이어질 수 있는데, 이는 관리 행위가 종종 프로젝트 붕괴의 주요 원인이 되는 것을 보여준다. The effect of Brooks's Law can be made worse by management action. Moreover, the same pattern of management action can lead to a Generalized Brooks's Law, which shows how management action is often the leading cause of project collapse.

  5. One reason management action contributes to runaway is the tendency to respond too late to deviations, which then forces management to big actions which themselves have non-linear consequences. That's why it's necessary to "act early; act small."
  6. 네거티브 피드백은 시스템에서 포지티브 피드백 루프로 인해 폭주를 방지할 수 있는 속도와 힘을 가진 유일한 메커니즘이다. 패턴3 컨트롤러에는 두 가지 주요한 네거티브 피드백 루프가 있는데 하나는 자원을 포함하고 다른 하나는 요건을 포함한다. Negative feedback is the only mechanism that has the speed and power to prevent runaway due to positive feedback loops in a system. The Pattern 3 controller has two major negative feedback loops with which to exercise control—one involving resources and one involving requirements.

Chapter 7: 소프트웨어 조정하기 (Steering Software)

Summary

  1. Many otherwise good ideal methodologies fail to help prevent collapse because they don't prescribe negative feedback actions to be taken when the project deviates from the ideal model.
  2. When the methodologies do prescribe feedback, they often speak only of the product level, or feedback steps that are too large. To be effective for control, feedback must operate in small increments, at all levels, personal, product, process, and cultural.
  3. Software professionals often overlook the human decision point in models of effects. One reason is their inability to visualize certain states at all, often because they are "other outputs" of the process, and not directly connected with the product.
  4. To control a project successfully, you have to learn that you need not be a victim of the dynamics. When human decision points are involved, it's not the event that counts, it's your reaction to the event.

Chapter 8: 조정에 실패하기 (Failing to Steer)

Summary

  1. Many project managers fail to steer well because they believe they are victims, with no control over the destiny of their project. You can easily identify these managers by their use of "victim language."
  2. Brooks's Law doesn't have to be a victim law if the manager recognizes where the managerial control is, and that this control can take different forms.
  3. A common dynamic is punishing the messenger who brings accurate but bad news about project progress. This intervention avoids "negative talk," but also diminishes the chance of the manager's making effective interventions needed to keep a project on the road.
  4. Since the time of the Greeks, people have not only gotten their interventions wrong, they've gotten them backwards. Laying out a clear diagram of effects can help you sort out a situation in which two parties are driving each other to destruction, all the while thinking they are helping the situation.

Part III. Demands That Stress Patterns

Chapter 9: 왜 조정하는 것은 항상 어려운가 (Why It's Always Hard to Steer)

Summary

  1. Human intervention dynamics are those over which we potentially have control, but there is always a set of "natural" dynamics which put a limit on how good a job any controller can do. A large part of the controller's job is devising intervention dynamics that can keep the natural dynamics under the best control possible, which can never be perfect.
  2. The Square Law of Computation says that computational complexity grows non-linearly as the number of factors in the computation grows.
  3. Control can be thought of as a game that the controller plays against "Nature." Even games of "perfect information," such as Tic-Tac-Toe and Chess, require non-linear increases in brainpower to play perfectly as the size of the "board" increases.
  4. Simplification is always needed, because controllers are always playing a "game" well outside their mental capacity. Simplification takes the form of rough dynamic models and approximate rules such as "Always break a project down into modules."
  5. Software engineering management is harder than Chess, because controlling a project is a game of "imperfect information," and the size of the "board" is not fixed.
  6. The Size/Complexity Dynamic appears in many forms throughout software engineering, forms such as the Fault Location Dynamic and the Group Interaction Dynamic.

Chapter 10: What It Takes To Be Helpful

Summary

  1. Our brains will never be big enough for our ambitions, so we'll always need thinking tools, such as size/effort graphs.
  2. Size/effort graphs can be used to reason about the Size/Complexity Dynamic, such as when estimating a project or comparing the impact of two different technologies. Graphs, however—such as log-log graphs—can also distort or conceal the non-linear nature of the dynamic. We must learn to see the stable meaning through the variations in the data and the method of presentation.
  3. Because of the Size/Complexity Dynamic, it's easy to write requirements that the most competent programmers cannot satisfy.
  4. A single method or tool is seldom the best over the entire range of problem sizes. Size/effort graphs can help managers combine two methods into a composite pattern that adopts the best range for each one.
  5. "The bottom line" doesn't dictate all technology choices. Managers are often willing to pay a lot on the bottom line to reduce the risk of failure. The size/risk graph can help in reasoning about these choices, especially when used in conjunction with the size/effort graph.
  6. If you set out to change an organization, the first rule should be the one given to physicians by Hippocrates" "Do no harm."
  7. We are all subject to the Size/Complexity Dynamic, so interactions intended to be helpful often wind up being irrelevant, or actually destructive. It's a good idea to assume that regardless of how it looks or sounds, everyone is trying to be helpful.
  8. We can help most when we apply the The Principle of Addition to add more effective models to a person's repertoire.

Chapter 11: 고객 요청에 대한 응답들 (Responses to Customer Demands)

Summary

  1. The relationship with customers is the second important factor driving organizations to particular software cultural patterns.
  2. Simply increasing the number of customers can wreak vast changes on an organization, such as
    • increasing the development load
    • increasing the maintenance load
    • disrupting the pattern of development work
  3. On the other hand, a software development organization can be extremely disruptive to its customers. That's why customers try to be controllers of the software development organization, leading to a situation of multiple controllers. The more controllers, the more "randomness" there appears to the other controllers.
  4. The cast of outsiders who may influence software development is enormous, including such roles as
    • customers and users
    • the marketing department
    • other surrogates
    • programmers as self-appointed user surrogates
    • testers as official and unofficial surrogates
    • other unplanned surrogates
  5. Many of these outsider roles are planned as attempts to reduce the effective number of customers.
  6. Because some of the surrogates are much more intimate with the development system, they may negate their reduction of the effective number of customers with the force and frequency of their interactions.
  7. Interactions with customers are fraught with peril as the number of customers grows. Interruptions increase. Meetings increase in size and frequency. Time lost because of interrupted meetings increases. All of these increases are non-linear.
  8. With more customers comes more configurations to support. More configurations means additional coding, more complex testing, less effective test coverage, and longer repair times.
  9. Releases are needed whenever there are multiple customers. As soon as a product is released to customers, it assumes an entirely different dynamic than when it was held in the shadow of the development organization.
  10. Multiple versions of a software product complicate maintenance enormously, but more customers means more versions, whether official or unofficial. Frequent releases complicate the development/maintenance process, but so do infrequent releases, so that almost all software cultures tend to stabilize releases at around two per year.

QSM/Vol1/Vol 1.1 Summaries (last edited 2020-10-14 14:17:40 by 정수)