
Organizational Patterns: 
Building on the Agile 
Pattern Foundations 

by James O. Coplien, Neil B. Harrison, 
and Gertrud Bjørnvig

What really works in software development management?

Practices and deep organizational structures — what the

authors refer to as organizational patterns — that result in

customer satisfaction and lay the foundation for organizational

adaptability and agility. The following Executive Report

discusses the top 10 patterns that successful organizations and

teams have used and provides a framework within which you

can customize these practices for your own enterprise.

Agile Project
Management

Vol. 6, No. 6

http://www.cutter.com


About Cutter Consortium
Cutter Consortium is a truly unique IT advisory firm, comprising a group of more
than 100 internationally recognized experts who have come together to offer
content, consulting, and training to our clients. These experts are committed to
delivering top-level, critical, and objective advice. They have done, and are doing,
groundbreaking work in organizations worldwide, helping companies deal with
issues in the core areas of software development and agile project management,
enterprise architecture, business technology trends and strategies, enterprise risk
management, metrics, and sourcing.

Cutter offers a different value proposition than other IT research firms: We give you
Access to the Experts. You get practitioners’ points of view, derived from hands-on
experience with the same critical issues you are facing, not the perspective of a 
desk-bound analyst who can only make predictions and observations on what’s
happening in the marketplace. With Cutter Consortium, you get the best practices
and lessons learned from the world’s leading experts; experts who are implementing
these techniques at companies like yours right now. 

Cutter’s clients are able to tap into its expertise in a variety of formats including
content via online advisory services and journals, mentoring, workshops, training,
and consulting. And by customizing our information products and training/
consulting services, you get the solutions you need, while staying within 
your budget.

Cutter Consortium’s philosophy is that there is no single right solution for all
enterprises, or all departments within one enterprise, or even all projects within a
department. Cutter believes that the complexity of the business-technology issues
confronting corporations today demands multiple detailed perspectives from which a
company can view its opportunities and risks in order to make the right strategic and
tactical decisions. The simplistic pronouncements other analyst firms make do not
take into account the unique situation of each organization. This is another reason to
present the several sides to each issue: to enable clients to determine the course of
action that best fits their unique situation.

For more information, contact Cutter Consortium at +1 781 648 8700 or
sales@cutter.com.

Cutter Business Technology Council

Access 
to the

Experts

Tom DeMarco Christine Davis Lynne Ellyn Jim Highsmith Tim Lister Ken Orr Lou Mazzucchelli Ed YourdonRob Austin

http://www.cutter.com
mailto:sales@cutter.com


by James O. Coplien, Neil B. Harrison, and Gertrud Bjørnvig

Organizational Patterns: 
Building on the Agile
Pattern Foundations 
AGILE PROJECT MANAGEMENT
ADVISORY SERVICE
Executive Report, Vol. 6, No. 6

INTRODUCTION

You’re a project manager, an
executive, a line manager, or
maybe even a developer, and you
have more than a hunch that you
could deliver high-quality software
faster. You believe that you really
could meet those schedules and
that you really could meet require-
ments regularly, if only …

But it’s difficult to put your finger
on the “if only.” Once in a while,
you get a glimpse of an improve-
ment opportunity: after a chance
meeting with a customer or a
particularly good or bad group
meeting, you get a glimpse of a
breakthrough. Yes, you’re already
following this or that management
book, methodology, or fad. And
it sounds good — or at least it
sounded good when the group

got excited about it and brought
the solution in the door. But now
you’re not sure whether you’re
following the technique correctly,
or even if you did, whether the
technique would save you. You
don’t know whether it might
be the technique itself that is
strangling you.

The answers aren’t trivial, but
there are answers. It’s impossible
to manage a healthy, successful
software project without manag-
ing the organization itself. And
unless you shape the patterns of
relationship, communication, and
software assembly in an organiza-
tion, you aren’t really managing
the organization. It is at these
foundations of organization and
management where the systemic,
long-term problems of software

productivity and quality can be
redressed.

Organization and management
are about people. We know
Conway’s Law, a heuristic that
suggests a close tie between the
technical issues of architecture
and the human issues of organiza-
tional structure. Conway’s Law
holds that the structure of any IT
system reflects the structure of the
organization that builds it. This
principle works at human scale: it
addresses relationships, software
structures, organizational struc-
tures, and processes that people
deal with at a deep level through-
out their workday. There are other
celebrated principles of organiza-
tion and management at the
enterprise level. While they have
their place in an overall corporate
framework, they are rarely of

http://www.cutter.com


direct value to software managers
and developers and, in fact, are
often detrimental. The principles
of agile and the patterns of soft-
ware development organizations
operate at human scale, at the
center of the concerns of the
project manager, product man-
ager, and the other roles that
touch the bits and bytes that
delight your customers and
sustain your business.

Over a period of more than 10
years, we have studied hundreds
of software development teams to
answer the question “What really
works in software development
management?” As time went on,
it became clear which practices
and organizational structures
result in customer satisfaction and
lay the foundation for organiza-
tional adaptability and agility. We
found, researched, validated, and
documented about 100 of these
configurations. We call them
“organizational patterns,” or deep
structures that define the culture
of a software development organi-
zation. Our results are collected in
the work Organizational Patterns
of Agile Software Development
[10]. This work captures the struc-
tural foundations of agile software
development practice, and as
such, it is one of the best practical
starting points for agile process
improvement. Mike Beedle,

coauthor of Agile Software
Development with SCRUM [23],
writes:

Although “agile develop-
ment” perhaps was first
practiced by LISP pro-
grammers in the 1960’s,
Organizational Patterns is
perhaps the first documenta-
tion that ever existed on true
agile development. No one,
to my knowledge, had
done so before. (Not Scrum,
which started in 1993, nor
XP which started much later,
etc.). [3]

While all 100 patterns have a role
in making organizations strong, a
remarkably small number of pat-
terns form the successful core
structures of agile organizations.
In this Executive Report, we pre-
sent the top 10 patterns from our
extensive research over the past
12 years. These top 10 patterns
might be all you need to turn your
organization around. They cer-
tainly lay a broad foundation for
powerful software process
improvement. This report is a
primer and get-started-quick pack-
age on organizational patterns.

Deeper Than Processes

Patterns are a crucial tool of orga-
nizational design because they go
deeper than processes or an orga-
nizational chart. They are not just
project management for the

moment but a form of project
management that shapes your
organization for the future while
honoring short-term project goals.
Each pattern individually achieves
a small improvement. The pat-
terns are designed to amplify one
another so that, over time, you
reap the benefits of major restruc-
turing with the low risk of local
incremental change. Patterns are
unlike many process improve-
ment programs that touch only
the symptoms of software devel-
opment failure or are limited to
simple cause-and-effect analyses
that fail to redress systemic prob-
lems. This Executive Report helps
to repair, grow, and revitalize
your organization by shaping
its foundations in small steps.
Furthermore, it puts structures
in place that help keep your orga-
nization agile.

A New Twist on Old Ideas

The patterns of successful organi-
zations are well established. Many
of them have long been known as
hallmarks of great organizations,
and you will recognize many from
the literature or your own experi-
ence. Our work on patterns of
software agility adds two compo-
nents to this mature body of litera-
ture. First, it defines and fills in the
broad spectrum that ranges from
managerial practices all the way
down to software implementation

VOL. 6, NO. 6 www.cutter.com

22 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

The Agile Project Management Advisory Service Executive Report is published by the Cutter Consortium, 37 Broadway, Suite 1, Arlington, MA 
02474-5552, USA. Client Services: Tel: +1 781 641 9876 or, within North America, +1 800 492 1650; Fax: +1 781 648 1950 or, within North America, 
+1 800 888 1816; E-mail: service@cutter.com; Web site: www.cutter.com. Managing Editor: Cindy Swain, E-mail: cswain@cutter.com. Group
Publisher: Kara Letourneau, E-mail: kletourneau@cutter.com. Production Editor: Lauren S. Horwitz, E-mail: lhorwitz@cutter.com. ISSN: 1536-2981.
©2005 by Cutter Consortium. All rights reserved. Unauthorized reproduction in any form, including photocopying, faxing, and image scanning, is
against the law. Reprints make an excellent training tool. For more information about reprints and/or back issues of Cutter Consortium publications,
call +1 781 648 8700 or e-mail service@cutter.com.

mailto:sales@cutter.com
mailto:service@cutter.com
mailto:service@cutter.com
http://www.cutter.com


and the practices of those who
create it. These two ends of the
project management spectrum
are much more closely connected
than either a manager or software
engineer might realize. Without
tying together these two perspec-
tives — and many others — it’s
difficult to attack the system con-
cerns that are the most serious
threats to a software enterprise.

Second, it ties together these pat-
terns according to how they build
on one another. Instead of being
a list or partitioning of individual
rules, these patterns are linked
to one another so that you can
assemble them into a structure
that repairs and strengthens your
organization incrementally
through a process guided by
both experience and feedback.

The Patterns and Agile

All major agile disciplines have
their roots in the work that under-
lies these patterns. These patterns
have their origins in a project at
Bell Laboratories that was affec-
tionately called the Pasteur project
— a pun on the “cultural” nature
of Petri dishes one might associ-
ate with the pioneer Louis
Pasteur. The goal of the project
was to analyze the culture of
software development organiza-
tions using techniques from the
social sciences. At the time, most
software improvement work
was grounded either in ISO 9000
efforts or the SEI’s Capability
Maturity Model (CMM®). Each
had its shortcomings in addressing

system problems, guiding archi-
tectural structure, and solving the
problems germane to software
development. The Pasteur project
was an applied research project
that explored how to extend exist-
ing approaches to reach the more
fundamental, recurring problems
of software development. Unlike
many process improvement
efforts, it was based on empirical
studies and, thus, an understand-
ing of what works in the real
world. The empirical groundings
are a perfect match for a disci-
pline grounded in empiricism:
software patterns.

In August 1993, the software pat-
tern discipline was born at a
workshop in Colorado, USA. It
was at this meeting that some of
the early structural findings of the
Pasteur project found their way
into pattern form. A collection of
organizational patterns grew; and
by the fall of 1994, a collection of
about 40 organizational patterns
existed. Coauthor James Coplien
presented these patterns at the
first pattern conference in Allerton
Park, Illinois, where Cutter
Consortium Senior Consultant
Kent Beck helped to shepherd the
work, providing feedback on the
conference paper. Beck would
later cite Coplien as one of three
influences in his work on Extreme
Programming (XP) [2].

Other organizational pattern
works soon followed, including
papers presented at the same
conference by Norman Kerth [18]
and Bruce Whitenack [25] that

went beyond software architec-
ture to explore the realm of
human behavior. In the following
year, Cutter Consortium Senior
Consultant Alistair Cockburn
published “Prioritizing Forces in
Software Design” [7], and Ward
Cunningham published his
EPISODES pattern language [13].
The former would become
one of the foundations of the
AgileAlliance, and the latter lent
major structure to XP. All these
works had a pattern focus and
emanated from the pattern com-
munity. In the meantime, Scrum
also drew on the roots of the
Pasteur project and in particular
on one of the Pasteur case studies
published in Dr. Dobb’s Journal,
a study on the Quattro Pro for
Windows development project
at Borland [9].

Most branches of the agile move-
ment trace back to these original
organizational patterns. It took
several years to refine these
patterns, understand how they
worked together in practice, and
combine them into sequences
that would generate successful
software development organiza-
tions. The branches were brought
back together in the 2004 book
Organizational Patterns. The col-
lection was edited by two of the
coauthors of this report, James
Coplien and Neil Harrison, into
a cohesive and broad work built
on the original core patterns but
that drew heavily on patterns —
whether in “pattern form” or
not — from the branches of the
agile movement.

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 33



Agility and Adaptiveness

To be agile means to have the
ability to ride out the unexpected
and to capitalize on flexibility. An
organization is a living thing: it
grows and shrinks, reorganizes
itself according to its environment,
and responds to its environment.
It never stands still. A good organi-
zation isn’t rigid but can bend with
the winds of change. Taken to an
extreme, however, flexibility
becomes a weakness. Strength
comes from structure. With struc-
ture, an organization can coordi-
nate its members to do things that
no single member can do.

Extreme Programming suggests a
structure based on programmers,
a coach, a team of a certain size,
and — in its foundations — the
Smalltalk programming language.
Also in its foundations are strong
admonitions against free combi-
nations of the principles and prac-
tices; the structure is relatively
fixed. This structure gives XP proj-
ects a degree of agility in a certain
context, most notably in small,
single-thread Smalltalk program-
ming projects.

However, the foundations of XP
cannot easily adapt to projects
outside this context; rather than
adapting to you, it asks that you
adapt to it. Such adaptation too
often discards the gems of insight
that are the core competencies of
an enterprise. Good organizational
improvement builds on the
strengths of the existing orga-
nization, which include its

organizational structures, tools,
principles, and processes.

As envisioned by Cutter
Consortium Agile Project
Management Practice Director
Jim Highsmith or by Alistair
Cockburn, the agile discipline —
or organizational patterns — isn’t
only about agility in the develop-
ment organization; it’s also about
agility in the principles them-
selves. One doesn’t follow a
method to be agile; rather, agile
encompasses a management style
that is responsive to its environ-
ment. Agile patterns build not only
on the responsiveness that comes
from feedback but also on the
empirical evidence that provides
managers with the assurance that
an individual improvement has
low risk.

A Kit, Not a Religion

Organizations have their own
culture. The earth sustains innu-
merable human cultures, each
one of which is “successful” in
the sense that it has evolved over
decades, centuries, or even mil-
lennia to adapt to the climate, his-
tory, and makeup of the area. A
book on organizations can no
more describe how to build an
ideal organization than a book on
anthropology can describe how
to form an ideal culture. Just as
there is no single ideal culture,
there is no single ideal organiza-
tion. What makes an organization
ideal in its context is that it meets
the business’s needs that define
that context. Each organization
has its own business climate,

history, and staff that make it
unique. Each pattern must be fit
to the context where it applies.
Different organizations require dif-
ferent combinations of patterns
for healing and growth.

Organizational patterns provide a
kit of organizational structures that
you can assemble according to
the needs of your business, adapt-
ing each pattern to your organiza-
tion as you go. You and your
organization, rather than the pat-
terns themselves, are in charge.
Each organization follows its own
path to evolve with these patterns
and is unique in the world at each
stage of development. 

PRINCIPLES OF 
ORGANIZATIONAL CHANGE

Systems Thinking

To move beyond individual Band-
Aids that attempt cause-and-effect
attacks on problems, and to com-
bine small patterns to bring about
emergent change, is a powerful
form of systems thinking. Most
process-based approaches are
locked in cause-and-effect mod-
els, which lead to the belief that
you can be in control. To change a
system requires subtle changes at
a level deeper than process; you
must change its structure. One
reason that agile approaches have
promise is that they are grounded
in the deepest foundations of sys-
tems thinking: those of principles
and values. Principles and values
give rise to the structure of an
organization. We can communi-
cate the structure of a system as

VOL. 6, NO. 6 www.cutter.com

44 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

http://www.cutter.com


patterns of relationship between
its parts, and the parts themselves
can reflect patterns of recurring
structure. The structure of a sys-
tem generates its processes as we
consider in process improvement
approaches such as ISO 9001.
Figure 1 shows how patterns fit
in systems thinking in the domain
of software development. 

For example, consider the process
of pair programming or code
inspections in your organization.
Why do you have these proc-
esses? They come about because
of a relationship between one set
of individuals (the coders or dri-
vers) and another set of individu-
als (the reviewers or observers),
each of which bring different per-
spectives to a design problem.
These relationships come about
from the structure of the organiza-
tion. Why does the structure exist
as it does? The structure owes
much to the organizational princi-
ples and values by which the orga-
nization came together. We have
reviewers and observers because
we value the diverse skills neces-
sary to build a quality product. We
have managers and developers
both because we want a desig-
nated position that supports the
coders as they produce the artifact
for which customers will pay
money and because we don’t
want developers to be sidetracked
by common management issues.

One mistake is to effect organiza-
tional change at too shallow a
level. If you try to change process
without changing the structure,

the change is transitory, because
the structure will eventually win
out. On the other hand, if you try
to go too deeply too quickly, you
increase risk. Changing the value
system or principles of an organi-
zation takes time, often cannot
be done directly, and in any case
cannot be done without making
structural changes. As structural
changes, patterns provide a
good balance between the
process level and the level of
values and principles.

Patterns also provide a unifying
formalism with wide applicability.
A pattern can change the organi-
zational structure by adding a
role, adding a relationship
between existing roles, constrain-
ing size, changing communica-
tions paths, or through numerous
other restructurings. All of these
structural changes combine to
improve the organization. All the
patterns we discuss in this report

have an empirical basis, and we
have taken great care to find the
proper ordering that allows them
to amplify one another.

Why Use Patterns?

Patterns are about structure, and
lasting organizational change can
happen at no more shallow a
level than that of the organiza-
tional structure. Perhaps more
important, the pattern approach
is a systems thinking approach
that embodies many key elements
of a philosophy of organizational
growth. Among these principles
are systems thinking, piecemeal
growth and local repair of an
organization, feedback, and
human comfort.

The best way to understand a
pattern is as a structure-preserving
transformation of an organization
structure. A pattern adds local
structure to a system while retain-
ing the overall major rhythms of

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 55

 

 

   

 

 

Structure 
(Patterns) 

Processes 

 
 

  

 Code 

Inspection

Recommitment

Meeting

Unit 

Test

Developer 

Controls  

Process

Engage 

Customers

Function Owner 

and Component  

Owner

Architect  

Also  

Implements

Agile Values 

and Principles

Individuals  

and Interactions
Customer 

Contact

Product 

Focus

Embrace 

Change

Figure 1 — Systems thinking in software development. 



the system to which it is applied.
A pattern makes it possible to
effect change while maintaining
continuity. Pattern-based change
is incremental change, and incre-
mental change is low-risk.

Complex Things Are Complicated1

One reason that organizational
change is so difficult is that orga-
nizations are complex. A single
simple change to an organization
can influence only one thread of
interactions or one facet of orga-
nizational structure, and that
single fix is likely to go unnoticed
in light of the myriad other inter-
actions and other facets of orga-
nizational structure. A local
change can make things better
locally, but unless there is an
ongoing process of change —
through the application of other
patterns — to make room for
that pattern to grow throughout
the organization, the global struc-
ture will eventually silence the
individual local change.

One can’t bring about large
organizational impact by making
a large organizational change;
instead, one has to combine
multiple small changes that
are applied in a process of local
adaptation and piecemeal growth.
These changes eventually make
room for one another to have
impact, and things start to fall into
place. Don’t think of patterns as
changing your organization, but as

making change possible. After
you apply a few patterns — per-
haps with very little noticeable
improvement from individual
steps — the patterns start to
work together to attack system
problems.

For example, your problem may
be that developer productivity
is low. You encourage developers,
even buy them tools, and it
doesn’t seem to help. You might
try spreading their work more
evenly so that underutilized peo-
ple get more work and saturated
people have time to recharge.
Now morale is a bit better, but
productivity doesn’t change. They
have good contact with cus-
tomers: you may have been flying
the customers to your site once a
week to meet with developers
for two days. You might read the
FIREWALLS pattern and decide
that these developers’ exposure to
customers is too much of a good
thing, so as a manager, you start
filtering some of the interactions
between customers and develop-
ers. You convey key notions gener-
ated by customers to developers
but also free up developers’ time
spent interacting with customers,
which gives developers 20 more
hours a week to produce code.
This also gives you more time
with developers, and you try to
guide them so that their work
best meets project needs. Still,
the efforts don’t quite seem to
get off the ground. The two pat-
terns DISTRIBUTE WORK EVENLY
and FIREWALLS remove some
obstacles, but it’s not until the

developers combine their knowl-
edge of their code with the knowl-
edge of customer needs that you
convey to them that they are able
to use the pattern DEVELOPER
CONTROLS PROCESS. Now you
notice that productivity starts
taking off. It couldn’t happen if
developers were overloaded; it
couldn’t happen if their flow was
distracted by outsiders. All three
patterns work closely together.

The order of pattern introduction
is important. Later in this report,
we discuss a pattern language,
which is a grammar of sorts that
guides you through a sequence of
patterns to build and repair your
organization.

THE TOP 10 PATTERNS

The book Organizational Patterns
of Agile Software Development
contains approximately 100 pat-
terns divided into four pattern
languages. Some of these patterns
are fundamental because they
establish the common broad foun-
dations of almost all software
development organizations, while
other patterns are either germane
to specific kinds of software
development or describe the fine
structures found only in the most
mature organizations.

However, the scale of the pattern
isn’t always the best indicator of
success. As the architect Mies
van der Rohe noted, God is in
the details. An organization can’t
really fly until its rough edges
become a bit polished. It is likely

VOL. 6, NO. 6 www.cutter.com

66 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

1This idea is not a tautology but an insight that
bears deep consideration — think about it.
Many thanks to Dave Vlack for this apparent
Yogiism.

http://www.cutter.com


that a small number of these
patterns provide most of the foun-
dations for success in most soft-
ware development organizations.
This section describes 10 critical
organizational patterns. All other
patterns not described in detail in
this report are discussed at greater
length in Organizational Patterns. 

1. UNITY OF PURPOSE

2. ENGAGE CUSTOMERS

3. DOMAIN EXPERTISE IN ROLES

4. ARCHITECT CONTROLS
PRODUCT

5. DISTRIBUTE WORK EVENLY

6. FUNCTION OWNER AND
COMPONENT OWNER

7. MERCENARY ANALYST

8. ARCHITECT ALSO IMPLEMENTS

9. FIREWALLS

10. DEVELOPER CONTROLS
PROCESS

UNITY OF PURPOSE2

… The team is beginning to
come together. Team mem-
bers may come from differ-
ent backgrounds and may
bring with them many differ-
ent experiences.

      

Many projects have rocky begin-
nings as people struggle to work

together. Often, people have
different ideas about what the
final product should be. In fact,
the final product may well be a
pretty fuzzy concept. Yet people
must have a consistent view of
the product if there is any hope of
completing it. Each person is
different and has different views
and opinions. They come with
different backgrounds and experi-
ences, and they must learn to
work together. It is important
to get off to a good start; initial
impressions, good or bad, tend
to be lasting. 

Therefore: The leader of the
project must instill a common
vision and purpose in all mem-
bers of the team. This “leader,”
whether a manager, a worker
installed in the PATRON ROLE, or
a customer advocate, should be
someone who has the team’s
respect and influence over the
team’s thinking. Gaining respect
and influence requires overt
action; you can’t count on it hap-
pening automatically. The leader
should ensure that everyone
agrees on the following questions:
What is the product supposed to
do? Who are the customers, and
how will the product help them?
What is the schedule? Does every-
one feel committed to the sched-
ule? Who is the competition? An
important component of these
team unification exercises is to
identify the strengths of the team
and to use these strengths as
rallying points. The team thus
identifies the challenges and com-
petition and unites to overcome

and surpass them, respectively. As
time goes on, UNITY OF PURPOSE
continues to emerge from ongo-
ing dialogue within the team and
with customers and other stake-
holders. While the team leader
primes the pump, team dynamics
take over and give a project
momentum.

      

The obvious result is that the team
works together rather than at
cross-purposes. A more subtle yet
probably more powerful effect is
what healthy team dynamics can
do for the morale of the team.
The best teams tend to believe
that they are somehow better
than others — and they work to
prove it! This pattern relates to
some deep-seated principles and
values of organizational health.
There may be no more important
property of an organization than
that its members have a shared
vision that they are motivated to
achieve. Communication —
which receives the bulk of the
attention in this report — is just
a means to achieve that shared
vision. Thus, UNITY OF PURPOSE
is a deeper principle than even
effective communication; com-
munication is just a means to the
end — UNITY OF PURPOSE. 

…

ENGAGE CUSTOMERS

… An organization is in
place, and its QA function
has been generally shaped
and chartered. The QA func-
tion needs input to drive its

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 77

2With the exception of FUNCTION OWNER
AND COMPONENT OWNER, these patterns are
adapted from Organizational Patterns and are
reproduced with the gracious permission of
Prentice Hall publishers. Some section cross-
references and passages within the book have
been omitted.



work. Many people in the
enterprise are concerned
about quality issues.

      

It’s important that the develop-
ment organization ensures and
maintains customer satisfaction
by encouraging communication
between customers and key
development organization roles.
This communication isn’t the
responsibility of any single cus-
tomer satisfaction group; instead,
the need pervades the entire orga-
nizational structure. Most organi-
zations hesitate to allow direct
contact between developers and
customers, fearing that the devel-
opers are loose cannons who will
promise to deliver things that
exceed the scope of a job.

Yet you can’t know all of the
requirements up front, so devel-
opers constantly need to go back
to customers for more informa-
tion. In turn, customers constantly
need to come back to developers
with their insights, particularly
when developers BUILD PROTO-
TYPES. After all, requirements
changes occur even after design
reviews are complete and coding
has begun.

Many organizations depend on
their marketing units to provide
requirements data, but marketing
doesn’t provide design data [4].
The best that marketing can — or
should — do is understand what
will sell and why people will buy
what you want to sell. Designers,

in turn, must understand how
people will use the product in a
way that creates value for them.
Good value sometimes leads to
good market potential, but mar-
keting usually looks at other
factors (e.g., brand-name recogni-
tion, product name, and posturing
in the market) that designers care
little about. 

Missing customer requirements is
a serious problem; in fact, most
problems in software systems can
be traced to requirements prob-
lems [5, 14]. Yet it seems like so
much effort to elicit these require-
ments, especially when the work
does not directly produce a mar-
ketable artifact. It seems like
make-work.

Customers are traditionally not
part of the mainstream develop-
ment effort, which makes it diffi-
cult to discover and incorporate
their insights. Yet customer con-
tact correlates with project suc-
cess [17]. Trust relationships
between managers and coders
are often strained, so you don’t
want them to be the sole interme-
diaries between developers and
customers. 

Therefore: Closely couple the
customer role with the devel-
oper and architect roles, not
just with QA or marketing roles.
In short, developers and archi-
tects must talk freely and often
with customers. When possible,
engage customers in their own
environment rather than bring-
ing them into yours.

Two elements are necessary
to allow this interaction to
happen: opportunity and culture.
Developers must have the oppor-
tunity (and the means) to com-
municate with customers. They
should meet customers personally
to establish trust and a free flow
of communication.

But if the organizational culture
builds walls between customers
and developers, these visits will
be superficial. In particular, if
system requirements must go
through a lengthy formal process
to be approved, the developer will
be hamstrung, unable to respond
to customer requests. Therefore,
the organization must develop a
culture in which developers
have some latitude to respond to
customers. We’re not saying, how-
ever, that all control of require-
ments should be given to the
developer. Order is necessary. 

As Hugh Beyer and Karen
Holtzblatt note, “Many common
ways of working with customers
remove [designers] from their
work” [4]. One way to solve this
problem is by “putting designers
and engineers directly in the cus-
tomer’s work context” [4], a par-
ticularly important activity if you
use customer engagement to cre-
ate wholly new market directions
for the enterprise rather than sim-
ply to refine existing work. Putting
developers in the customer’s
work environment also trains
developers’ intuition about good
design and human interfaces,
and this intuition can fill in when

VOL. 6, NO. 6 www.cutter.com

88 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

http://www.cutter.com


specific detailed requirements
are unavailable [4].

Language is a key element of
culture that can ensure a smooth
customer engagement if treated
properly and can smother it if
treated badly. Don’t make your
customers learn UML or other
technical notations; instead, do
your best to learn their language
and to communicate with them in
the terms of their culture.

The QA team can monitor the
relationship to keep the direction
within contractual business limits
while allowing a free flow of
insights back and forth between
developers and customers. Such
communication can often flow
unimpeded; at other times, how-
ever, it cannot (see the GATE-
KEEPER pattern). Note that the
GATEKEEPER pattern is all about
relationships and culture. It is
the culture of respect for and
interaction with customers that
makes the communication effec-
tive, such as during the writing
of use cases, which is described
in PARTICIPATING AUDIENCE [6]. 

      

ENGAGE CUSTOMERS supports
requirements discovery from the
customer, as dictated by the pat-
terns SCENARIOS DEFINE PROBLEM
and BUILD PROTOTYPES. Other
patterns like FIREWALLS also
build on this pattern. The pattern
RECOMMITMENT MEETING is a more
formal derivative of this pattern in
a different context.

A good understanding of customer
needs can help you avoid rework
after implementation is done.
While it is also important to con-
tinuously engage customers
through each development
episode of iteration, early under-
standing helps launch the effort in
the right direction. For example, a
Navision team in Copenhagen,
Denmark, believes that improve-
ments in customer engagement
helped save time on its develop-
ment schedule.

Some processes and methods are
founded on customer engage-
ment, such as IBM’s joint applica-
tion development (JAD). Other
methods are conducive to cus-
tomer engagement, such as
Cunningham and Beck’s class
responsibility collaborator (CRC)
design technique. Other methods,
and especially most CASE-based
methods, are indifferent or harm-
ful to customer engagement.

Even some of the best customer
engagement techniques tend to
end once the parties achieve
some level of contractual agree-
ment about what is to be deliv-
ered. Customer engagement in
agile processes, however, goes
far beyond this traditional stopping
point. Developers need to assimi-
late the context in which their
product will be used; this proc-
ess is called contextual design.
Contextual design means
gathering data on customers’
models of how they do their work
rather than on how the program
will solve the problem, as in use

case modeling (see [4]). The pat-
tern is called ENGAGE CUSTOMERS
(note the plural) to support a
domain view and to avoid the
possibility of being blindsided by
a single customer.

The project must be careful to
temper interactions between cus-
tomers and developers, using
FIREWALLS, GATEKEEPER, and the
QA organizational presence, as
in ENGAGE QUALITY ASSURANCE.
A major part of interacting with
customers involves learning how
they want to interact with the
project as the unfolding software
uncovers problems in require-
ments and systems engineering
(APPLICATION DESIGN IS BOUNDED
BY TEST DESIGN).

Note that maintenance of product
quality is not the problem being
solved here. Product quality is
only one component of customer
satisfaction. One study shows that
20% of customers will leave a
company for another when they
believe that they are being
ignored and that 50% of cus-
tomers will defect when the
attention they receive is rude or
unhelpful [26]. If customers
experience software problems
that cost more than US $100 to fix,
and if the company does not fix
these problems, only 9% of the
customers would continue to
do business with the company;
82% would do business with the
company again if the problems
were quickly resolved following
the company’s receipt of
complaint [26].

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 99



… 

DOMAIN EXPERTISE IN ROLES

… You know the key atomic
process roles (FORM FOLLOWS
FUNCTION), including a char-
acterization of the developer
role.

      

Matching staff with roles
is one of the most difficult
challenges of a growing and
dynamic organization. All roles
must be staffed with qualified
individuals. Just as in a play,
several actors may be assigned
to a single role, and any actor
may play several roles.

You’d like to use domain-
nonspecific qualification criteria
like college grades or years of
experience to qualify people for
jobs. Such an approach gives the
project flexibility in staff alloca-
tion, and it helps it avoid being
overly dependent on individual
skill sets and experience. In short,
the hope that such criteria might
work provides project managers
with a basis for keeping the proj-
ect from becoming overly depen-
dent on certain individuals who
may leave or who may hold the
organization hostage to gain
higher salaries or to see their own
policies implemented unilaterally.
Nonetheless, successful projects
tend to be staffed not with
employees who possess textbook
qualifications but with those who
have already worked on success-
ful projects.

Spreading expertise across roles
complicates communication
patterns. It makes it difficult for
a developer or other project
member to know whom to turn
to for answers to domain-specific
requirements and design
questions. 

Therefore: Hire domain experts
with proven track records, and
staff the project with the exper-
tise embodied in their roles.
Teams and groups tend to form
around areas of common domain
interest and focus. As mentioned,
any actor may fill several roles,
and in many cases, multiple
actors can fill a given role. 

Domain training is more important
than process training. Organi-
zations can benefit from having
local gurus in all areas from appli-
cation expertise to expertise in
methods and language.

      

DOMAIN EXPERTISE IN ROLES
is a tool that helps ensure that
roles can be successfully carried
out. It also helps make roles
autonomous. Empirically, highly
productive projects hire deeply
specialized experts. 

… 

If expertise becomes too narrow,
the organization is at risk of losing
key expertise in the event that a
single person leaves, is promoted,
and so on. Temper this pattern
with MODERATE TRUCK NUMBER,
which prevents the project from

becoming overly dependent on
a small number of individuals. 

… 

ARCHITECT CONTROLS PRODUCT

… An organization of devel-
opers needs strategic techni-
cal direction.

      

Even though a product is
designed by many individuals,
a project must strive to give the
product elegance and cohesive-
ness. One might achieve this end
by centralizing control, but most
development teams view such
control as a draconian measure.
One person can’t do everything,
and no one has perfect foresight.
However, the right information
must flow through the right roles,
and individual areas of compe-
tency and expertise must still be
engaged. Furthermore, there
needs to be some level of archi-
tectural vision. While some
domain expertise is distributed
through the ranks of the develop-
ment team (DOMAIN EXPERTISE IN
ROLES), the system view — and,
in particular, the design principles
that create a common culture for
dialogue and construction — usu-
ally benefits from the conceptual
integrity we associate with a sin-
gle mind or small group.

Therefore: Create an architect
role as an embodiment of the
principles that define an archi-
tectural style for the project
and of the broad domain exper-
tise that legitimizes such a style.

VOL. 6, NO. 6 www.cutter.com

1100 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

http://www.cutter.com


The architect role should advise,
influence, and communicate
closely with developer roles.
The architect doesn’t dictate inter-
faces (other than in cases necessi-
tating arbitration). Instead, the
architect builds consensus with
individual developers and devel-
oper subteams.

The architect is the principal
bridge builder between develop-
ment team members. The archi-
tect should also be in close touch
with customers to ensure that
the domain expertise is current,
detailed, and relevant.

      

This pattern does for the architec-
ture what the PATRON ROLE pat-
tern does for the organization: it
provides technical focus and a ral-
lying point for both technical and
market-related work. The archi-
tect doesn’t control the product in
any dictatorial sense; instead, the
architect provides inspirational
guiding and leadership. We could
have called this pattern ARCHITECT
LEADS PRODUCT or ARCHITECT
GUIDES PRODUCT, but these varia-
tions have their own problematic
connotations.

Resentment can build against a
totalitarian architect, so patterns
like STAND-UP MEETING should
be used to prevent this from
occurring. 

Intellectually large projects can
build an ARCHITECTURE TEAM.

We have no designer role,
because design is really the whole
task. Managers fill a supporting
role; empirically, they are rarely
seen as controlling a process
other than during crises.

While the architect controls the
architectural direction, the DEVEL-
OPER CONTROLS PROCESS, and
there is still an OWNER PER DELIV-
ERABLE. The architect is a chief
developer (see ARCHITECT ALSO
IMPLEMENTS) or, as Christopher
Alexander describes himself, a
“master builder” [1]. The archi-
tect’s responsibilities include
understanding requirements,
framing the major system struc-
ture, and guiding the long-term
evolution of that structure. The
architect controls the product in
the visualization process that
accompanies the pattern ENGAGE
QUALITY ASSURANCE.

Because ORGANIZATION FOLLOWS
LOCATION and because of CON-
WAY’S LAW, there should probably
be an architect at each location.
Architects can be the focus of
local allegiance, which is one of
the most powerful cultural forces
in geographically distributed
development.

A more passive way of imple-
menting this pattern is to have
the architect review everything.
We have seen this process work
on several projects. However, the
“truck number” — that is the
number of employees with knowl-
edge and expertise — was in dan-
ger on most of these projects as a

result (MODERATE TRUCK NUM-
BER). Also, if there is a conscious
plan for architects to review
everything, they — in their capac-
ity as developers (ARCHITECT ALSO
IMPLEMENTS) — may swoop down
and fix things that are the respon-
sibility of others (CODE OWNER-
SHIP), which can be demoralizing
for the original code author. The
architect can review everything if
the role still defers to the imple-
menter for execution as well as
the decision about making the
change (STAND-UP MEETING). 

Architectural control must balance
developer authority and the role of
keeper of the flame. Architects
should not tread on developers’
sense of code ownership or own-
ership of code development
processes. Architects intervene in
processes largely at the business
level and should meddle in imple-
mentation processes only in
exceptional circumstances.

… 

DISTRIBUTE WORK EVENLY

… An organization is working
to organize itself in a way
that makes the environment
as enjoyable as possible and
that makes the most effec-
tive use of human resources.

      

It is easy to depend on just a
few people to carry most of
the organization’s burdens.
Managers like to rely on a few
key people in order to minimize
the number of interfaces they

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 1111



need to manage. And some
employees strive to do all they
can out of a misplaced sense of
monumental responsibility. In
fact, we find that PRODUCER
ROLES tend to have stronger
communication networks than
other support roles.

But if this uneven distribution
of work continues, it becomes
difficult for a heavily loaded role
to sustain the communication
networks necessary to the healthy
functioning of the enterprise as
a whole. Resentment may build
among employees who don’t
feel central to the action. And
those who are central may easily
burn out.

Define the communication inten-
sity ratio as the ratio of the num-
ber of communication paths of
the busiest role to the average
number of communication paths
per role. Empirically, one finds
that the organization has a prob-
lem — some underlying unhealth-
iness — if this ratio becomes too
large. 

Therefore: Try to keep the com-
munication intensity ratio to two
or less. (The authors have found
that it’s difficult to get much
below two.) The easiest way to
keep this ratio low is to have FEW
ROLES. It also helps to identify the
PRODUCER ROLES and eliminate
any deadbeat roles. You can also
identify all the communication
paths of the most central role and
see which are really necessary.

Some of this communication over-
head isn’t very subtle, and these
cases are easy to identify. In
many cases, you can eliminate
redundant or misdirected commu-
nication using simple and direct
methods without delving into the
deep structure or principles of the
organization. Other situations
require more finesse and genera-
tivity, building on other patterns in
this pattern language.

      

As we’ve discussed, if an organi-
zation becomes sufficiently out of
balance that the work is concen-
trated in the hands of only a few
people, those people are likely to
experience burnout. Such uneven-
ness may also indicate deeper
organizational problems. For
example, those carrying a lighter
load may not have the technical
skills or the human interaction
skills needed to integrate into
the larger team or organization.
Personality differences can be
addressed with human effective-
ness training programs (e.g.,
appreciating differences or giving
effective presentations). Skill
mismatches can be dealt with
by reassigning people or through
skill training.

An imbalance may also point to
insecurity in the person or clique
that tries to take on all the work.
Such insecurity may manifest as
lack of trust in others. Encounters
between the insecure parties
and the rest of the project team

polarize the positions of each,
and a form of “schismogenesis”
may set in: the rise of factions
in the organization (THE OPEN/
CLOSED PRINCIPLE OF TEAMS).
Insecure subgroups may withdraw
from the rest of the team or even
try to hijack the project by strong-
arming people into doing their
bidding. Such behaviors may
be accompanied by some of
the dynamics of burnout (e.g.,
shutting down communication
with “outsiders”). Patterns like
GATEKEEPER, WISE FOOL, and
PATRON can help avoid the cre-
ation of unhealthy factions.

In any of these dysfunctional
situations, it is the job of the
manager to counsel the parties
involved and to forcefully inter-
vene. Correcting the problem
is often an intricate and time-
consuming process. This pattern
follows PRODUCER ROLES and
PRODUCERS IN THE MIDDLE, which
are prerequisites to SHAPING CIR-
CULATION REALMS. This pattern
itself is a refinement of SHAPING
CIRCULATION REALMS. FEW ROLES
makes this pattern happen. This
pattern can be implemented and
elaborated by using RESPONSIBILI-
TIES ENGAGE and THREE TO SEVEN
HELPERS PER ROLE.

Figure 2 shows the communica-
tion intensity ratio data gathered
from some of our early research
subjects. We find that successful
organizations tend to be near the
origin point on the graph.

VOL. 6, NO. 6 www.cutter.com

1122 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

http://www.cutter.com


FUNCTION OWNER AND
COMPONENT OWNER

… The functions in your proj-
ect tend to cut across the
components of your project.
You recognize the importance
of organizing according to the
architecture of the project
(CONWAY’S LAW), but things
aren’t simple.

      

If you organize teams by com-
ponents, functions suffer, and
vice versa.

You may be organized by function
or use case, with no component
ownership. On the other hand,
you may be organized by class or
component, with no function or
use case ownership. In either

case, you ask the same question:
“What happens when two people
need to program the same
function?”

You want ownership and consis-
tency in these functions as well as
in the components. And the com-
ponents must be shared across
the teams. If you just assign func-
tion owners, the components
become shared and lose their
identity and integrity. But if you
have only component owners, the
functions become orphans. Who
ensures that they get done? 

Therefore: Ensure that every
function has an owner and that
every component has an owner.
Make sure that every component
has a responsible owner and that

every delivered function has a
responsible owner. The compo-
nent owner answers for the
integrity and quality of the
component. The function owner
ensures that the function gets
delivered. If the component
owners all refuse to incorporate
something needed to deliver end
functionality, the function owner
sees that the missing code is put
in a function-specific place.

      

There may be friction between
component owners and function
owners. You may find the need
for the ENVY/Developer model
of ownership, where there is a
common part and an application-
specific part to each component

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 1133

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7

Communication intensity ratio

N
u

m
b

e
r 

o
f 

ro
le

s

Figure 2 — The relationship between the communication intensity ratio and an organization’s number of roles.



or class. No conflict resolution is
needed in this strategy since the
component owner has right of
refusal to any request, and the
function owner has recourse by
working with others to get the
job done.

… 

MERCENARY ANALYST3

… You are assembling the
roles for the organization.
The organization exists in
a context where external
reviewers, customers, and
internal developers expect to
use project documentation
to understand the system
architecture and its internal
workings. (User documenta-
tion is considered sepa-
rately.) Supporting both a
design notation and the
related project documenta-
tion is too tedious a job for
those who are directly con-
tributing to product artifacts.

      

Technical documentation is the
dirty work required in every
project. It’s important to create —
and even more, to maintain —
good documentation for the proj-
ect team’s subsequent use. But
who writes these documents?

If developers create their own
documentation, “real” work is
hampered. Meeting software
deadlines means money for the
organization, and technical docu-
mentation is one of those things
we tell ourselves that we can

defer until there is time to do it.
But often, the time never comes,
and an organization without good
internal technical documentation
of its system has a serious handi-
cap. Nonetheless, much internal
documentation is often write-only;
it is rarely read after it is written.
Further, engineers often lack good
communication skills.

Many projects use tools like IBM’s
Rational Rose for design. These
tools produce pretty pictures. A
good picture, however, is not nec-
essarily a good design, and archi-
tects can become victims of the
elegance of their own drawings. 

Therefore: Hire a technical
writer who is proficient in the
necessary domains but who
does not have a stake in the
design itself. This person will
capture the design using a suit-
able notation and will format and
publish the design for reviews and
for use by the organization itself.

      

The documentation itself should
be maintained online if possible. It
must be kept up to date (there-
fore, MERCENARY ANALYST is a 
full-time job), and it should relate
to customer scenarios (SCENARIOS
DEFINE PROBLEM). Note, however,
that all team members need to
provide input to keep the docu-
mentation current. The AD HOC
CORRECTIONS pattern [24] sug-
gests that a master copy of the
documentation be kept and that
team members write corrections

in the margin. One team member
is assigned to periodically update
the document.

The success of this pattern
depends on the ability to find a
suitably skilled agent to fill the
role of mercenary analyst. If the
pattern succeeds, the new context
defines a project whose progress
can be reviewed (STAND-UP MEET-
ING) and monitored by commu-
nity experts outside the project.

If the MERCENARY ANALYST really
is a “mercenary” who, as Paul
Chisholm describes, “rides into
town, gets the early stuff docu-
mented, kisses his horse, saddles
up his girl, and rides off into the
sunset” [12], then it’s good to
retain some of the expertise by
combining MERCENARY ANALYST
with DEVELOPING IN PAIRS.

This pattern, uncommon though
empirically grounded and effec-
tive, is found in Borland’s Quattro
Pro for Windows and in many
AT&T projects (e.g., a joint venture
based in New Jersey, a formative
organization in switching support,
and others). It is difficult to find
people with the necessary skills
to fill this role.

Witold Rybczynski writes the fol-
lowing regarding the difficulties
associated with architecture:

Here is another liability:
beautiful drawings can
become ends in them-
selves. Often, if the drawing
deceives, it is not only the
viewer who is enchanted but
also the maker, who is the

VOL. 6, NO. 6 www.cutter.com

1144 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

3A version of this pattern first appeared in [8].

http://www.cutter.com


victim of his own artifice.
Alberti understood this dan-
ger and pointed out that
architects should not try to
imitate painters and produce
lifelike drawings. The pur-
pose of architectural draw-
ings, according to him, was
merely to illustrate the rela-
tionship of the various parts.
… Alberti understood, as
many architects of today
do not, that the rules of
drawing and the rules of
building are not one and
the same, and mastery of
the former does not ensure
success in the latter. [22]

… 

In e-mail correspondence with
one of the coauthors, Richard
Gabriel noted the following
important traits that distinguish
this role [16]:

Strong skills as a meeting
facilitator

An inclination for organization 

Attentiveness to detail

Possesses written instructional
material (for software) 

A lack of ego investment in the
material being documented

Intelligence and a high level of
education

In exceptional cases, the MERCE-
NARY ANALYST can actually have
a stake in the design.

Elizabeth Hanes Perry writes
about filling this role:

When I fill this role, I most
definitely have a stake in the

design: I want to make sure
it’s elegant, consistent, and
clean. The architect has
primary responsibility, of
course, but I also suggest
places in which the design
conflicts with itself or may
lead to future misunder-
standings. As I see it, a soft-
ware architecture is an idea.
The designer/implementers
are responsible for express-
ing that idea (or those ideas)
as code; I express it/them as
prose. Both are projections
of the idea into a particular
plane. When there’s a con-
flict, the code is probably
correct. [20]

Many projects put faith in tools
and notations such as UML to
improve quality. But as Perry
points out, tools largely provide
the forum and opportunity for a
human being to engage in the
processes and convey the insights
that contribute to quality. For doc-
umentation to have added value
as a quality tool, the documenta-
tion process must proceed in the
spirit of this admonition.

… 

ARCHITECT ALSO IMPLEMENTS

… An organization is being
built to serve an identified
market or markets (ORGANI-
ZATION FOLLOWS MARKET).
Going forward, the project
needs the necessary archi-
tectural breadth to cover
its markets and to ensure
smooth evolution, but it can’t
be blindsided by pragmatic
engineering and implemen-
tation concerns. Further-
more, the project needs to
carry through a singular

architectural vision from
conception to implementa-
tion if it is to have conceptual
integrity.

      

A software project must
broaden the scope of leader-
ship without sacrificing depth
and attention to pragmatics.
Though developers are good at
making individual design and
implementation decisions, a proj-
ect needs an overall guiding
strategic technical direction. This
direction usually comes from the
architect. However, too many soft-
ware architects limit their thinking
and direction to abstractions, and
abstraction is a disciplined form of
ignorance. Too many projects fail
to capture the “details” of perfor-
mance, subtleties of APIs, and
interworking of components — or
at best, they discover such prob-
lems too late.

It’s possible that this problem
could be solved with totalitarian
control if one had a perfect plan.
But as we’ve mentioned previ-
ously, even if that were possible,
most development teams view
this level of control as excessive.

The right information must flow
through the right roles. In particu-
lar, developers must latch onto the
strategic vision and carry respon-
sibility for implementation. The
architect, and to some degree the
developers, must also understand
the application needs and be
able to portend the long-term
structure of the system. But a

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 1155



more centralized locus of strategic
direction should keep the project
from floundering, ensure that the
necessary details are addressed,
and track the emerging fit of
all the pieces into a whole.
Sometimes, understanding how
these pieces fit together requires a
corresponding understanding of
low-level details of component
interaction, protocols, APIs, per-
formance, or reliability concerns. 

Therefore: Beyond advising
and communicating with devel-
opers, architects should also
participate in implementation.
The architect should be organi-
zationally engaged with develop-
ers and should write code. The
architect may implement along
with a developer using DEVELOP-
ING IN PAIRS.

      

If the architect implements, the
development organization per-
ceives buy-in from the guiding
architects, and that perception
can avail itself of architectural
expertise directly. The architects
also learn by seeing the firsthand
results of their decisions and
designs, thus providing feedback
on the development process.

In a project one of the coauthors
worked on recently, the impor-
tance of making this pattern
explicit became clear. The archi-
tecture team was being assem-
bled from dispersed geographic
locations with narrow communi-
cation bandwidth between them.

Though general architectural
responsibilities were identified
and the roles were staffed, one
group expected architects also to
implement code, whereas the
other did not.

One manager suggests that, on
some projects, architects should
focus only on the implementation
of a common infrastructure; the
implementation of noncore code
should thus be left solely to the
developer role. This division of
responsibilities may work on
some projects; however, the
architect must have a strong feel
for recurring application needs in
order to build long-term robust
frameworks. If architects work
only on infrastructural concerns
and lack an engaged appreciation
of application needs, a disconnect
results between the infrastructure
(framework and middleware) and
the application. 

… 

Though the architect should be
able to understand the minutiae
of development, it is not neces-
sarily the architect’s business to
deal with such details day in
and day out. The architect is the
keeper of the flame, the owner
of the principles that the project
follows. These principles in turn
shape structure. Much of the
structure can emerge from a
consensus-driven process guided
by the architect; in fact, in practice
much of what architects do
involves such high-level guidance
[11]. A related pattern is GURU

DOES ALL from the collection of
Don Olson [19], which states
the following:

A newly formed team is
given a project with a tight
schedule, uncertain require-
ments, uneven distribution of
skills, and new technologies.
Let the most skilled and
knowledgeable developer
drive the design and imple-
ment the critical pieces. This
can be an antipattern. [21]

The key element of this pattern
is to give the critical pieces of
the project to the most skilled
and knowledgeable practitioners
(DOMAIN EXPERTISE IN ROLES). 

…

FIREWALLS

... An organization of devel-
opers has formed in a corpo-
rate or social context where
they are scrutinized by peers
and by funders, customers,
and other “outsiders.”
Project implementers are
often distracted by outsiders
who feel a need to offer
input and criticism.

      

It’s important to placate stake-
holders who feel a need to
“help” by giving them access
to low levels of the project, with-
out distracting developers and
others who are moving toward
project completion.

Isolationism doesn’t work
because information flow is
important. But communication
overhead increases nonlinearly

VOL. 6, NO. 6 www.cutter.com

1166 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

http://www.cutter.com


with the number of external
collaborators.

Many interruptions are noise. 

Maturity and progress are more
highly correlated with being in
control than with being effectively
controlled. 

Therefore: Create a manager
role that shields other develop-
ment personnel from interaction
with external roles. The responsi-
bility of this role is “to keep the
pests away.”

      

The new organization isolates
developers from extraneous
external interrupts. To avoid
isolationism, this pattern must
be tempered with others, such
as ENGAGE CUSTOMERS and
GATEKEEPER.

This pattern was present in both
the Borland Quattro Pro for
Windows project [10, Chapter 8]
and in a hyperproductive deve-
lopment team we studied [10,
Chapter 9]. In addition, see the
pattern ENGAGE CUSTOMERS,
which complements this pattern. 

… 

DEVELOPER CONTROLS PROCESS

... An organization has come
together to build software
for a new market in an
immature domain or in a
domain that is unfamiliar to
the development team.
Progress will be marked by
an INFORMAL LABOR PLAN.

The necessary roles have
been defined and initially
staffed.

      

Like any culture, a development
culture can benefit from recog-
nizing a focal point of project
direction and communication.
Successful organizations work in
an organic way with a minimum
of centralized control. Yet impor-
tant points of focus, embodied in
roles, tie together ideas, require-
ments, and constraints into an
artifact ready for testing, packag-
ing, marketing, and delivery.

Most development teams view
strict control as excessive and
heavy-handed. The right informa-
tion must flow through the right
roles. You need to support infor-
mation flow across analysis,
design, and implementation.

Because developers contribute
directly to the end-user-visible
artifact, they are in the best posi-
tion to have accountability for
the product. Of all roles, they have
the largest stake in the largest
number of phases of product
development, and there should be
no accountability without control.
A manager has some accountabil-
ity as well, to the extent that he or
she indirectly supports delivery of
the user-visible artifacts. These are
process issues. 

Therefore: Make the developer
the focal point of process
information. In the spirit of
ORGANIZATION FOLLOWS MARKET,

place the developer role at a hub
of the process for a given feature.
A feature is a unit of system func-
tionality (implemented largely in
software) that can be separately
marketed and for which cus-
tomers are willing to pay. Devel-
oper responsibilities include
understanding requirements,
reviewing the solution structure
and algorithm with peers, building
the implementation, and perform-
ing unit testing.

… 

Note that other hubs, such as the
manager role, may exist as well,
though they are less central than
the developer role.

      

The developer who is at the hub
of a particular feature may be
granted that position according to
FEATURE ASSIGNMENT, but more
generally developers should be at
the communication hub of what-
ever process engages them in
writing code for the customer.
This pattern encourages a struc-
ture that supports its prime infor-
mation consumer. The developer
can be moved toward the center
of the process using the patterns
WORK FLOWS INWARD and MOVE
RESPONSIBILITIES. Though the
developer should be a key role,
care must be taken not to over-
burden the role. This pattern
should be balanced with MERCE-
NARY ANALYST, FIREWALLS, and
GATEKEEPER and more general
load-balancing patterns like

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 1177



RESPONSIBILITIES ENGAGE, HALL-
WAY CHATTER, and MOVE RESPON-
SIBILITIES. The developer should
enjoy particularly strong support
from the PATRON ROLE, and con-
flicts can be escalated to the
PATRON ROLE when consensus
breaks down.

If the developer controls the
process, it’s possible to imple-
ment the pattern WORK FLOWS
INWARD. Developers, of course,
don’t control the process unilater-
ally but as a collective group, start-
ing with DEVELOPING IN PAIRS. 

As we’ve said previously, we don’t
have a designer role because
design is really the whole task.
Managers fill a supporting role;
empirically, they rarely control a
process except during crises. And
again, the developer controls the
process, the architect controls the
product. This communication is
particularly important in domains
that are not well understood, so
that iteration can take place to
explore the domain with the
customer.

In a mature domain, consider
HUB, SPOKE, AND RIM — a pattern
that orchestrates the work of sev-
eral pipelined workers around a
centralized coordinator — as an
alternative. 

You can still write down your
process as part of a process
improvement program. But keep
the documentation light; many
organizations have found that one
page per process is good enough.

And ensure that each process step
meets a need that you can tie to
your organization’s value proposi-
tion. Most often, this value is or
should be tied to the product you
produce for a paying customer. If
it isn’t obvious how the process
step helps to achieve what you
know the customer wants, then
do the right thing instead.

APPLYING THE PATTERNS

Patterns as Organizational
Building Blocks

Organizational patterns are a tool
for organizational change, growth,
and repair. An organization is a
system; that means changes to
one part of the organization affect
many other parts. As a system,
an organization has an intricate
fabric that links it together. In a
pattern language, patterns are the
fabric of your organization. Any
single pattern can be used to
patch that fabric, whether to grow
the organization or to fix it when
you notice something wrong. Even
growth should be viewed as an
act of repair. Repair is a kind of
change that must be compatible
with what preceded the fix. So
though each pattern should be
applied incrementally, with local
impact, it refines and comple-
ments the patterns that are
already there in a way that makes
the entire organization more
robust as a system.

Let’s assume that you live in
a charming old house. Let’s
compare the growth and
updating of the house with

the maintenance of an evolving
organization. Like a house, an
organization wears and tears over
time. You notice where the organi-
zation needs work and find the
appropriate pattern to strengthen
it. However, to repair the organiza-
tion, you have to understand its
basic style, patterns of organiza-
tion, and principles of construc-
tion, just as you would in
remodeling your old house. For
the new organization to retain the
core properties it strives to retain
over time, the patterns of the new
construction must match the old.
The new materials must be mal-
leable to fit the old and to support
future growth and adaptation.
Similarly, organizational mainte-
nance must mesh with what is
already present. You can choose
patterns that harmonize with one
another and with your organiza-
tion, since each pattern is flexible
enough to adapt to your unique
circumstances. Of course, this
metaphor doesn’t always apply
perfectly, and software develop-
ment organizations have much
richer structure than homes. But
this notion of mixing compatible
patterns is critical to solving your
organization’s system problems.

The Role of the Pattern Language

We’ve mentioned several times
that no pattern stands alone: pat-
terns are meant to be used along-
side one another to be effective.
This emphasizes what you prob-
ably already know: there is no
single miracle cure for an organi-
zation, no silver bullet to organiza-
tional success. You must do many

VOL. 6, NO. 6 www.cutter.com

1188 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

http://www.cutter.com


things right. And “doing things
right” differs from organization to
organization: each pattern must
be tailored to its context. Each
of these customized changes
produces a new and slightly better
organization that ensuing patterns
can build on.

Even though each pattern can be
customized, and each organiza-
tion reflects a slightly different set
of patterns, we can still make
strong claims about successful
software development organiza-
tions in general. Most have the
pattern ENGAGE CUSTOMERS; with-
out it, you won’t know what to
build. Most excellent software
development organizations share
a small number of common pat-
terns. In many cases, the organi-
zations grew in much the same
way: the patterns were applied in
a certain order.

Think of patterns as words in a
dictionary, and think of your orga-
nization as a sentence composed
from those words. We need a set
of rules for how to combine the
words in useful ways: that is, we
need a language of the words, a
language of the patterns. Based
on this metaphor, a collection of
patterns, together with rules for
assembling them in compatible
and useful ways, is called a pat-
tern language. We can depict
the language visually, with the
suggested partial ordering of
pattern application, with the most
basic pattern at the top. Each pat-
tern refines those above it and
provides a foundation for those

below it. Each pattern helps com-
plete those patterns above and
below it in the language.

Figure 3 shows a pattern language
for project management, built
from organizational patterns that
have been collected and pub-
lished over the past decade. As
the figure shows, patterns from
other pattern languages overlap
with project management and, as
such, may appear in several pat-
tern languages.

The language is taken from
Organizational Patterns of Agile
Software Development, as are
many other concepts in this
report. As mentioned previously,
it is one of four pattern languages
described in the book. The
four languages are Project
Management, Organizational Style,
Piecemeal Growth, and People
and Code. The patterns overlap
somewhat across the pattern lan-
guages; the “home” pattern lan-
guage for each pattern is shown
in the graph. A pattern language
guides you through the evolution
of your organization. It is not a
prescription but a suggestion
based on what has often worked
before. Don’t be afraid to use your
insight, intuition, and domain spe-
cialization to fine-tune the pattern
language. Think of organizational
repair as an almost playful activity
of discovery and adventure.

A Language of the 
Top 10 Patterns

We can make a mini-pattern lan-
guage from the top 10 patterns

discussed in this report. Figure 4
on page 21 shows what this pat-
tern language might look like.

You would start with the pattern
UNITY OF PURPOSE as a foundation
and then work your way down the
figure. You confront a choice right
away. Which pattern should come
first — DOMAIN EXPERTISE IN
ROLES, ARCHITECT CONTROLS
PRODUCT, or ENGAGE CUSTOMERS?
In many sectors, these three pat-
terns are often independent:
domain expertise, as embodied in
domain experts and experienced
architects, depends more on the
core business than on the needs
of individual customers. Once you
have DOMAIN EXPERTISE IN ROLES
and ARCHITECT CONTROLS PROD-
UCT, your architecture team can
begin an implementation: ARCHI-
TECT ALSO IMPLEMENTS. And now
you can take the domain experts
you hired and divide the work
among them, using customer
needs to guide project direction.
You need FIREWALLS to insulate
developers from customer whims,
while still allowing for customer
insights to reach developers.
Now you’re ready to start devel-
opment in full swing with DEVEL-
OPER CONTROLS PROCESS.

The Fundamental Process

All systems grow through a
fundamentally iterative process.
Christopher Alexander has
described such a process for
the architecture of buildings and
of the fine craftsmanship that
“decorates” these buildings [1].
His process draws heavily on the

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 1199



processes that biologists have
come to understand as fundamen-
tal to autopoietic systems and life
and on the processes that physi-
cists understand as fundamental
to the nature of matter and
existence. We have found the

following process to be an effec-
tive way to introduce patterns one
at a time, in a way that they fit
with one another. Because it is
based on local adaptation and
piecemeal growth, it minimizes
risk [10]:

1. Consider your organization
as a whole and find the weak-
est part: that is, the one with
the highest density of unre-
solved forces. If you are work-
ing your way through the
pattern language, look at the

VOL. 6, NO. 6 www.cutter.com

2200 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

Build
Prototypes

Surrogate
Customer

Community
of Trust

Size
the

Schedule

Compensate
Success

Early
and

Regular
Delivery

Phasing
It In

Named
Stable
Bases

Get
On
with

It

Work
Queue

Informal
Labor
Plan

Development
EpisodeDeveloper

Controls
Process

Work
Flows
Inward

Implied
Requirements

Feature
Assignment

Programming
Episode

Incremental
Integration

Take No
Small Slips

Completion
Head Room

Work
Split

Recommitment
Meeting

Someone
Always
Makes

Progress

Private
World

Team
per

Task

Interrupts
Unjam

Blocking

Sacrifice
One

Person

Developing
in Pairs

Don’t
Interrupt

an
Interrupt

Firewalls Mercenary
Analyst

Day Care

Scenarios
Define

Problem

Organizational 
Style

Piecemeal
Growth

People and
Code

Project
Management

Figure 3 — The Project Management pattern language. 

http://www.cutter.com


areas touched by the next pat-
terns in the language. If your
business environment has
changed, look at the areas
touched by those changes. If
you have just applied another
pattern, look at the forces that
have been exposed or left
unbalanced by the application
of that pattern.

2. Calibrate the forces with
respect to your business
and organizational goals. Pay
attention to factors that recur
in the tradeoffs related to the
problem you are solving, treat
transients as transients, and
then return your focus to the
long-term and systems issues.
Think about your personal and
corporate values and how they
amplify some forces and dimin-
ish others. Are you striving for
profitability? If so, which foun-
dational values in your organi-
zation underlie profitability?
And is profitability really your
main concern right now, or is
morale affecting productivity,
which is in turn affecting prof-
itability? Dig deeper.

3. Let the patterns inspire you
to find a way to balance the
forces. You might find that an
existing organizational pattern
is ready-made for your situa-
tion. It is more often the case
that an organizational pattern
will inspire your instinct to rec-
ognize a customized path to a
solution. Follow your instinct,
not the pattern. In many ways,
the main goal of a pattern is to
unleash the instinct within you

that derives from your experi-
ence but that may have been
quieted by local management
practices or by exposure to a
cookie-cutter management
technique adopted from a book
or corporate training program.

4. Keep the big picture. Adjust
the pattern in a way that
increases the organization’s
health at the next level in the
organizational structure or in the
next larger context or scope.

5. Strive for balance. Most of
these patterns are commu-
nication patterns, and commu-
nication is always a two-way
street. Be attentive to both
sides of the communication

structure or other structure of
the pattern.

6. Be attentive to feedback;
if the pattern does not
strengthen the organization,
then back it out. Do not try to
fix it by adding another pattern.
Choosing a pattern is not a
science; it is guided, informed
guesswork. Occasionally, you
will guess wrong. Patterns are
small enough that the cost of
making a mistake is minor and
almost always reversible. Be
open with your people that the
technique doesn’t work, and
enlist their support in trying
another solution. Keep in mind
that people resist change and

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 2211

 Unity of 
Purpose

Engage 
Customers

Architect  
Controls  
Product

Domain  
Expertise 
in Roles

Function  
Owner and  
Component 

Owner

Distribute 
Work 

Evenly

Mercenary  
Analyst

Architect 
Also  

Implements

Developer  
Controls  
Process

Firewalls

Figure 4 — The top 10 patterns as a pattern language. 



that sometimes a bit more time
or encouragement is enough to
gain acceptance. To succeed, a
pattern must be adopted by the
culture rather than being forced
onto the culture. Eventually, a
good pattern will lead you to a
new context — and to a new
set of forces to balance and
problems to address.

RESULTS YOU CAN EXPECT

Of course, we cannot promise
miracles. Most important perhaps
is to have patience; great change
rarely happens overnight and
usually comes about from the
interaction between several pat-
terns rather than from a single
pattern. The most difficult aspect
of organizational change is timing:
to know when to give up on a
pattern, back out, and try some-
thing else. Sometimes an organi-
zation proceeds step by step
toward improved behavior; some-
times organizations persist in bad
behavior until, one day, a precipi-
tous change happens. We offer no
magic solution to this dilemma
but suggest that you should be
most attentive to the morale and
feelings of your employees as an
indicator of whether a pattern is
working. Keep in close touch with
the people affected by the current
pattern and carefully consider
their sense of progress during
the adoption of a pattern by the
organization.

The Success Story

Almost every one of the 100
organizations we have researched

has benefited from considering
and tailoring these patterns to its
organizational needs. Richard
Gabriel explains the role of pat-
terns in turning around the
ParcPlace Systems software team
[15]. One of our organizational
interventions probably saved a
large insurance company from
demise; in another insurance
company in Vienna (Alliance
Elementar), the patterns helped
create connections between the
engineering group and manage-
ment and sparked management-
level initiatives that led to
renewed organizational health
and growth. These patterns have
proven themselves in European,
American, and Middle Eastern
companies. In some cases, the
benefits were local and modest;
in other cases, the survival of the
entire enterprise was at stake.

CONCLUSION

What we have discussed here
will help heal the most common
problems we have observed in
recent software development
efforts worldwide. However,
organizational development is an
ongoing concern of great depth
and breadth, and we exhort you
to broaden the tools available
to you through other resources.
Remember that though there is a
lot of literature on management
theory, and while theory can be
useful, it is very difficult to justify
any approach to improvement on
a theoretical basis alone. The
best resources are those that
reflect empirical insight. While the

organizational patterns literature
and the book Organizational
Patterns in particular are modern
examples of empirically grounded
organizational literature, they are
not without company. The writ-
ings of Capers Jones, Gerald
Weinberg, and others are also
grounded in experience.

Experience is the best teacher,
and patterns are designed to
provide an incremental, low-risk
path to process improvement.
One of the best ways to learn
more about these patterns is to
try implementing them. If you
are interested in learning about
how to start a pattern-based
organizational improvement
program inside your group or
department, TietoEnator (www.
tietoenator/oap.dk) offers a
facilitation service under its
Organizational Agility Program,
or you can contact the authors
directly.

REFERENCES

1. Alexander, Christopher, Sara
Ishikawa, and Murray Silverstein,
with Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel.
A Pattern Language: Towns,
Buildings, Construction. Oxford
University Press, 1977.

2. Beck, Kent. “The Metaphor
Metaphor.” Web page for OOPSLA
2002 accessed 20 March 2005
(http://oopsla.acm.org/oopsla2002/
fp/files/spe-metahpor.html).

3. Beedle, Mike. Book review of
Organizational Patterns of Agile

VOL. 6, NO. 6 www.cutter.com

2222 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

http://www.cutter.com


Software Development on
Amazon.com, 19 September 2004
(www.amazon.com/exec/obidos/
ASIN/0131467409).

4. Beyer, Hugh, and Karen
Holtzblatt. Contextual Design:
Defining Customer-Centered
Systems. Morgan Kaufmann, 1998.

5. Boehm, Barry W. “Software
Engineering.” IEEE Transactions
on Computers, Vol. 25, No. 12,
1976, pp. 1226-1241.

6. Bramble, Paul, Alistair
Cockburn, Andy Pols, and Steve
Adolph. Patterns for Effective Use
Cases. Addison-Wesley, 2002. 

7. Cockburn, Alistair. “Prioritizing
Forces in Software Design.” In
Pattern Languages of Program
Design 2, John M. Vlissides, James
O. Coplien, and Norman L. Kerth
(eds.). Addison-Wesley, 1996.

8. Cockburn, Alistair. Surviving
Object-Oriented Projects: A
Manager’s Guide. Addison-Wesley,
1998.

9. Coplien, James O., and Jon
Erickson. “Examining the Software
Development Process.” Dr. Dobb’s
Journal, Vol. 19, No. 11, October
1994, pp. 88-95.

10. Coplien, James O., and Neil B.
Harrison. Organizational Patterns
of Agile Software Development.
Prentice Hall, 2005. 

11. Coplien, James O., and
Martine Devos. “Architecture as
Metaphor.” Proceedings of the

World Conference on Systemics,
Cybernetics and Informatics,
Orlando, Florida, USA, July 2000,
pp. 737-742.

12. Chisholm, Paul S.R. Personal
communication with James
Coplien, 1994. 

13. Cunningham, Ward.
“EPISODES: A Pattern Language
of Competitive Development.” In
Pattern Languages of Program
Design 2, John M. Vlissides, James
O. Coplien, and Norman L. Kerth
(eds.). Addison-Wesley, 1996, 
pp. 371-388. 

14. Daly, Edmund B. “Manage-
ment of Software Development.”
IEEE Transactions on Software
Engineering, Vol. 3, No. 3,
May 1997, pp. 229-242.

15. Gabriel, Richard P.
“Productivity: Is There a Silver
Bullet?” Journal of Object-Oriented
Programming, Vol. 7, No. 1,
March/April 1994, pp. 89-92.

16. Gabriel, Richard. E-mail
message to James Coplien,
8 May 1995. 

17. Keil, Mark, and Erran Carmel.
“Customer-Developer Links
in Software Development.”
Communications of the ACM,
Vol. 38, No. 5, May 1995, pp. 33-44.

18. Kerth, Norman L. “Caterpillar’s
Fate: A Pattern Language for
Transformation from Analysis to
Design.” In Pattern Languages
of Program Design, James O.

Coplien and Douglas C. Schmidt
(eds.). Addison-Wesley, 1995.

19. Olson, Don. S. “Pattern on
the Fly.” The Patterns Handbook,
1998, pp. 141-170. 

20. Perry, Elizabeth Hanes.
Personal communication with
James Coplien, 1997. 

21. Rising, Linda. The Pattern
Almanac. Addison-Wesley, 2000.

22. Rybczynski, Witold. The Most
Beautiful House in the World.
Penguin, 1989.

23. Schwaber, Ken, and Mike
Beedle. Agile Software
Development with SCRUM.
Prentice Hall, 2001.

24. Weir, Charles. “Patterns for
Designing in Teams.” In Pattern
Languages of Program Design 3,
Robert Martin, Dirk Riehle,
and Frank Buschmann (eds.).
Addison-Wesley, 1998, 
pp. 496-499.

25. Whitenack, Bruce. “RAPPeL:
A Requirements Analysis Process
Pattern Language for Object-
Oriented Development.” In Pattern
Languages of Program Design,
James O. Coplien and Douglas C.
Schmidt (eds.). Addison-Wesley,
1995, pp. 259-291.

26. Zuckerman, Marilyn R.,
and Lewis J. Hatala. Incredibly
American: Releasing the Heart
of Quality. American Society for
Quality Press, 1992, pp. 81-83.

©2005 CUTTER CONSORTIUM VOL. 6, NO. 6

EXECUTIVE REPORT 2233



ABOUT THE AUTHORS

James O. Coplien is Object
Architect at DAFCA, Inc., an elec-
tronic design automation firm in
Framingham, Massachusetts, USA.
He has been a software profes-
sional for more than 30 years. His
career spans areas as broad as
telecommunications software
development (at AT&T), software
research (at Bell Laboratories),
academia (at Vrije Universiteit
Brussel, where he held the 2003-
2004 Vloebergh Lehrstuhl), EDA
(at DAFCA), and international con-
sulting and lecturing. His book
Advanced C++ shaped a genera-
tion of developers, and his two
subsequent books have set new
standards in software design and
development. He is a founding
member and member emeritus
of the Hillside Group, which
founded software patterns. He
is a coauthor or editor of three
major patterns books, including
Organizational Patterns of Agile
Software Development. He can be
reached at JOCoplien@cs.com.

Neil B. Harrison is a distinguished
member of technical staff at Avaya
Labs, where he develops commu-
nications software. He has been
involved in software development
and research for more than 20
years as both a developer and
team leader. He has studied soft-
ware development organizations
for 10 years and is coauthor of
the critically acclaimed book
Organizational Patterns of Agile
Software Development.

Mr. Harrison has been a leader in
the software pattern community
since 1994. He has taught pattern
courses and published patterns,
including patterns in Pattern
Languages of Program Design,
volumes 2 and 3. He was the lead
editor of Pattern Languages of
Program Design, volume 4. He is
acknowledged as the world’s
leading expert on pattern shep-
herding and has a shepherding
award named after him. He is a
member of the board of directors
of the Hillside Group. He can
be reached at nbharrison@
avaya.com.

Gertrud Bjørnvig is a senior
consultant in TietoEnator in
Copenhagen, Denmark. She does
organizational work for clients
based on organizational patterns
and uses these principles for orga-
nizational improvement in the
Scandinavian countries, drawing
on more than 15 years of experi-
ence in the industry. Her past
organizational work includes
interventions in multiple corporate
mergers to align the development
processes while retaining the ben-
efits of the highly effective work
culture that was in place. She is
an accomplished project man-
ager, focusing on on-time delivery
using agile approaches. She is an
expert on use cases and devel-
oped the first patterns for the
application of use cases in devel-
opment projects. She was a
founding program committee
member for VikingPLoP and is
one of the founders of the Danish
Agile User Group. She can be
reached at Gertrud.Bjornvig@
tietoenator.com.

VOL. 6, NO. 6 www.cutter.com

2244 AGILE PROJECT MANAGEMENT ADVISORY SERVICE

http://www.cutter.com


Index

ACCESS TO THE EXPERTS

Upcoming Topics

Agile Estimating and
Planing: Embracing
Change 
by Mike Cohn

Integrating Software
Development and Project
Management Methods
by Robert Wysocki

This index includes Agile Project

Management Executive Reports

and Executive Updates that

have been recently published,

plus upcoming Executive Report

topics. Reports that have already

been published are available

electronically in the Online

Resource Center. The Resource

Center includes the entire

Agile Project Management

Advisory Service archives plus

additional articles authored

by Cutter Consortium Senior

Consultants on the topic of

project management. 

For information
on beginning a subscription 

or upgrading your current 

subscription to include access 

to the Online Resource 

Center, contact your account 

representative directly or 

call +1 781 648 8700 or send

e-mail to sales@cutter.com. 

Executive Reports
Vol. 6, No. 6 Organizational Patterns: Building on the Agile Pattern Foundations

by James O. Coplien, Neil B. Harrison, and Gertrud Bjørnvig

Vol. 6, No. 5 Principle-Centered Agile Project Portfolio Management 
by Donna Fitzgerald

Vol. 6, No. 4 The Politics of Design and Usability by Whitney Quesenbery

Vol. 6, No. 3 The New World of Teams: Ad Hoc and Virtual by Rob Thomsett

Vol. 6, No. 2 Industrial XP: Making XP Work in Large Organizations 
by Joshua Kerievsky

Vol. 6, No. 1 Agile for the Enterprise: From Agile Teams to Agile Organizations 
by Jim Highsmith

Vol. 5, No. 12 Extreme Programming Practices: What’s on Top? by Laurie Williams

Vol. 5, No. 11 Getting It Right, Getting It Done: Improving Team Productivity and Quality 
by Pamela Hager

Vol. 5, No. 10 Usability and the Agile Project Management Process Framework
by Jonathan D. Addelston and Theresa A. O’Connell

Vol. 5, No. 9 Making Decisions Using Software Product Metrics by Khaled El Emam

Vol. 5, No. 8 Leading Extreme Projects to Success by Doug DeCarlo

Vol. 5, No. 7 Pushing the Envelope: Managing Very Large Projects by Ken Orr

Vol. 5, No. 6 The Usability Challenge by Larry L. Constantine

Executive Updates
Vol. 6, No. 9 Why Is Agile Development So Scary? by Preston G. Smith

Vol. 6, No. 8 How Do Agile Teams Manage Risk by Laurent Bossavit

Vol. 6, No. 7 Measuring Up to Metrics: Part III — Overcoming Project Complexity
by E.M. Bennatan

Vol. 6, No. 6 Donkeys and Carrots: Customer Collaboration and Helping Others 
by Ole Jepsen

Vol. 6, No. 5 Mitigating Large Software Project Risk Through Organic Growth 
Organization by Nick Christenson

Vol. 6, No. 4 Measuring Up to Metrics: Part II —  Are Software Organizations 
Measuring by Data? by E.M. Bennatan

Vol. 6, No. 3 Measuring Up to Metrics: Part I — How I Became a Missourian 

by E.M. Bennatan

Vol. 6, No. 2 Agile: Changing the Organization by David Spann

Vol. 6, No. 1 Using the Retrospective for Positive Change by Diana Larsen

Vol. 5, No. 23 Absorbing Sarbanes-Oxley Within the Agile Community 
by Charles W. Butler and Gary L. Richardson

Vol. 5, No. 22 A New Era of Software Project Management: Part III — Agile Project 
Management and the Stealth Fighter by E.M. Bennatan 

Vol. 5, No. 21 A New Era of Software Project Management: Part II — Are Agile Projects 
Filling the Void? by E.M. Bennatan 

Vol. 5, No. 20 Agile Development: Lessons Learned from the First Scrum 
by Dr. Jeff Sutherland

Vol. 5, No. 19 A New Era of Software Project Management: Part I — Are We Adjusting? 
by E.M. Bennatan 

> Agile Project Management
Advisory Service

of published issues

http://www.cutter.com


Ab
ou

t t
he

 P
ra

ct
ice Agile Project

Management Practice
Cutter Consortium’s Agile Project Management Practice helps companies succeed
under the pressures of this highly turbulent economy. The practice is unique in that
its Senior Consultants — who write the reports and analyses for the information
service component of this practice and do the consulting and mentoring — are the
people who’ve developed the groundbreaking practices of the Agile Methodology
movement. The Agile Project Management Practice also considers the more
traditional processes and methodologies to help companies decide what will
work best for specific projects or teams. 

Through the subscription-based publications and the consulting, mentoring, and
training the Agile Project Management Practice offers, clients get insight into Agile
methodologies, including Adaptive Software Development, Extreme Programming,
Dynamic Systems Development Method, and Lean Development; the peopleware
issues of managing high-profile projects; advice on how to elicit adequate
requirements and managing changing requirements; productivity benchmarking;
the conflict that inevitably arises within high-visibility initiatives; issues associated
with globally disbursed software teams; and more.

Products and Services Available from the Agile Project Management
Practice

• The Agile Software Development and Project Management Advisory Service
• Consulting
• Inhouse Workshops
• Mentoring
• Research Reports

Other Cutter Consortium Practices
Cutter Consortium aligns its products and services into the nine practice areas
below. Each of these practices includes a subscription-based periodical service,
plus consulting and training services. 

• Agile Software Development and Project Management
• Business Intelligence
• Business-IT Strategies
• Business Technology Trends and Impacts
• Enterprise Architecture
• IT Management
• Measurement and Benchmarking Strategies
• Enterprise Risk Management and Governance
• Sourcing and Vendor Relationships

Senior Consultant
Team
The Cutter Consortium Agile Project
Management Senior Consultant Team
includes many of the trailblazers in the project
management/peopleware field, from those
who’ve written the textbooks that continue
to crystallize the issues of hiring, retaining,
and motivating software professionals, to
those who’ve developed today’s hottest Agile
methodologies. You’ll get sound advice and
cutting-edge tips, as well as case studies and
data analysis from best-in-class experts. This
brain trust includes: 

• Jim Highsmith, Director
• Scott W. Ambler
• Christopher M. Avery
• James Bach
• Paul G. Bassett
• Kent Beck
• E.M. Bennatan
• Tom Bragg
• David R. Caruso
• Robert N. Charette
• Alistair Cockburn
• Mike Cohn
• Ken Collier
• Doug DeCarlo
• Tom DeMarco
• Khaled El Emam
• Donna Fitzgerald
• Kerry F. Gentry
• Michael Hill
• David Hussman
• Ron Jeffries
• Joshua Kerievsky
• Bartosz Kiepuszewski 
• Brian Lawrence
• Tim Lister
• Michael C. Mah
• Lynne Nix
• Ken Orr
• Mary Poppendieck
• Roger Pressman
• James Robertson
• Suzanne Robertson
• Rob Thomsett
• Colin Tully
• Bob Wysocki
• Richard Zultner

http://www.cutter.com

